首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
Syn5 is a marine cyanophage that is propagated on the marine photosynthetic cyanobacterial strain Synechococcus sp. WH8109 under laboratory conditions. Cryoelectron images of this double-stranded DNA (dsDNA) phage reveal an icosahedral capsid with short tail appendages and a single novel hornlike structure at the vertex opposite the tail. Despite the major impact of cyanophages on life in the oceans, there is limited information on cyanophage intracellular assembly processes within their photosynthetic hosts. The one-step growth curve of Syn5 demonstrated a short cycle with an eclipse period of ~45 min, a latent phase of ~60 min, and a burst size of 20 to 30 particles per cell at 28°C. SDS-PAGE and Western blot analysis of cell lysates at different times after infection showed the synthesis of major virion proteins and their increase as the infection progressed. The scaffolding protein of Syn5, absent from virions, was identified in the lysates and expressed from the cloned gene. It migrated anomalously on SDS-PAGE, similar to the phage T7 scaffolding protein. Particles lacking DNA but containing the coat and scaffolding proteins were purified from Syn5-infected cells using CsCl centrifugation followed by sucrose gradient centrifugation. Electron microscopic images of the purified particles showed shells lacking condensed DNA but filled with protein density, presumably scaffolding protein. These findings suggest that the cyanophages form infectious virions through the initial assembly of scaffolding-containing procapsids, similar to the assembly pathways for the enteric dsDNA bacteriophages. Since cyanobacteria predate the enteric bacteria, this procapsid-mediated assembly pathway may have originated with the cyanophages.  相似文献   
2.
The marine cyanophage Syn5 can be propagated to a high titer in the laboratory on marine photosynthetic Synechococcus sp. strain WH8109. The purified particles carry a novel slender horn structure projecting from the vertex opposite the tail vertex. The genome of Syn5 includes a number of genes coding for novel proteins. Using immune-electron microscopy with gold-labeled antibodies, we show that two of these novel proteins, products of genes 53 and 54, are part of the horn structure. A third novel protein, the product of gene 58, is assembled onto the icosahedral capsid lattice. Characterization of radioactively labeled precursor procapsids by sucrose gradient centrifugation shows that there appear to be three classes of particles—procapsids, scaffold-deficient procapsids, and expanded capsids. These lack fully assembled horn appendages. The horn presumably assembles onto the virion just before or after DNA packaging. Antibodies raised to the recombinant novel Syn5 proteins did not interfere with phage infectivity, suggesting that the functions of these proteins are not directly involved in phage attachment or infection of the host WH8109. The horn structure may represent some adaption to the marine environment, whose function will require additional investigation.  相似文献   
3.
4.
The Protein Journal - Allergic diseases are a socially significant problem of global importance. The number of people suffering from pollen allergies has increased dramatically in recent decades....  相似文献   
5.
6.
A three‐step synthesis was implemented to prepare a quaternary ammonium functionalized blue fluorescent poly(propylene imine) dendrimer modified with pyridinium salt of 4‐acylamino‐1,8‐naphthalimide. The new cationic dendrimer absorbs in the ultraviolet light region and emits blue fluorescence. Its spectral characteristics in organic solvents and in an aqueous solution were studied. The influence of pH on the fluorescence intensity of the dendrimer was established with regard to its use as a pH sensor. The effect of hydroxyl ions on the absorption and fluorescence spectra in dry N,N‐dimethylformamide was also investigated. The antimicrobial activity of the dendrimer was assessed against model pathogenic microorganisms in agar, liquid medium, and after its deposition on cotton fabric.  相似文献   
7.
International Journal of Peptide Research and Therapeutics - Herein, we report design and synthesis of series of adamantane derivatives containing modified peptides with thiazol moiety. New...  相似文献   
8.
9.
Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC‐MS) and high‐performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids – e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, β‐aminoisobutyric acid, β‐sitosterol and α‐tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal – improving crop drought tolerance.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号