首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   21篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   19篇
  2020年   8篇
  2019年   10篇
  2018年   16篇
  2017年   9篇
  2016年   16篇
  2015年   27篇
  2014年   25篇
  2013年   36篇
  2012年   35篇
  2011年   37篇
  2010年   14篇
  2009年   15篇
  2008年   14篇
  2007年   21篇
  2006年   18篇
  2005年   15篇
  2004年   9篇
  2003年   13篇
  2002年   8篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1968年   1篇
排序方式: 共有388条查询结果,搜索用时 31 毫秒
1.
White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. Identification of host cellular proteins interacting with WSSV will help in unravelling the repertoire of host proteins involved in WSSV infection. In this study, we have employed one-dimensional and two-dimension virus overlay protein binding assay (VOPBA) followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the host proteins of Penaeus monodon that could interact with WSSV. The VOPBA results suggest that WSSV interacted with housekeeping proteins such as heat shock protein 70, ATP synthase subunit β, phosphopyruvate hydratase, allergen Pen m 2, glyceraldehyde-3-phosphate dehydrogenase, sarcoplasmic calcium-binding protein, actin and 14-3-3-like protein. Our findings suggest that WSSV exploits an array of housekeeping proteins for its transmission and propagation in P. monodon.  相似文献   
2.
The effect of temperature on embryonic development and reproduction ofLymnaea luteola was studied. This snail did not develop completely and failed to reproduce at 15 °C and 40 °C. The temperature range of 25 °C–35 °C was observed to be optimum for development and reproduction of this snail. The utility of this study in predicting seasonal fluctuations of snail population in nature is discussed.  相似文献   
3.
Sequences homologous to oncogeneyes (Y73/Esh/sarcoma viral oncogene cDNA) in theDrosophila melanogaster Oregon genome were detected byin situ hybridization on salivary gland chromosomes. Three separate sites, 8D/X, 57BC/2R and 95CD/3R, were identified. Presence of sequences highly homologous toyes in the genomic DNA was confirmed by dot blot hybridization under high stringency conditions.  相似文献   
4.
5.
6.
7.
Molecular Biology Reports - A 26-year-old male had a history of frequent bowel movements, mushy stool with mucus and loss of 25 kg body weight in 6 months was diagnosed as a case...  相似文献   
8.
9.
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.  相似文献   
10.

Background

Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.

Methods

We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.

Conclusions

CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号