首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2022年   3篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.

Background and Aims

Tolerance and defence against herbivory are among the many mechanisms attributed to the success of invasive plants in their novel ranges. Because tolerance and defence against herbivory differ with the ontogeny of a plant, the effects of herbivore damage on plant fitness vary with ontogenetic stage and are compounded throughout a plant''s lifetime. Environmental stresses such as light and nutrient limitations can further influence the response of the plant. Much is known about the response of plants in the seedling and reproductive adult stages, but less attention has been given to the pre-reproductive juvenile stage.

Methods

Juvenile plants of the North American invasive Lonicera maackii were exposed to simulated herbivory under high and low light and nitrogen availability and growth, allocation patterns and foliar defensive chemistry were measured. In a second experiment, complete nutrient availability and damage type (generalist caterpillar or simulated) were manipulated.

Key Results

Juvenile plants receiving 50 % defoliation had lower total biomass and a higher root^:^shoot ratio than controls for all treatment combinations except low nitrogen/low light. Low light and defoliation increased root^:^shoot ratio. Light, fertilization and defoliation had little impact on foliar defensive chemistry. In the second experiment, there was a reduction in total biomass when caterpillar damage was applied. The root^:^shoot ratio increased under low soil fertility and was not affected by defoliation. Stem-diameter growth rates and specific leaf area did not vary by damage type or fertilization. Foliar protein increased through time, and more strongly in defoliated plants than in controls, while peroxidase activity and total flavonoids decreased with time. Overall, resource limitations were more influential than damage in the growth of juvenile L. maackii plants.

Conclusions

The findings illustrate that even when resources are limited, the tolerance and defence against herbivory of a woody invasive plant in the juvenile stage may contribute to the establishment and persistence of some species in a variety of habitats.  相似文献   
2.
The enemy release hypothesis predicts that invasive plant species may benefit from a lack of top-down control by co-evolved herbivores, particularly specialists, in their new range. However, to benefit from enemy escape, invasive plants must also escape or resist specialist or generalist herbivores that attack related species in the introduced range. We compared insect herbivore damage on the exotic shrub, Lonicera maackii, the native congener Lonicera reticulata, and the native confamilial Viburnum prunifolium in North America. We also compared the laboratory preference and performance of a North American honeysuckle specialist sawfly (Zaraea inflata) and the performance of a widespread generalist caterpillar (Spodoptera frugiperda) on cut foliage from native and exotic Lonicera species. L. maackii received significantly lower amounts of foliar herbivory than L. reticulata across three seasons, while damage levels observed on V. prunifolium for two seasons was generally intermediate between L. reticulata and L. maackii. The specialist sawfly damaged L. reticulata heavily, but was not detected on L. maackii in the field. There were few statistical differences in the performance of sawfly larvae on L. reticulata and L. maackii, but the sawfly achieved higher pupal masses on L. reticulata than on L. maackii, and they strongly preferred L. reticulata over L. maackii when given a choice. The sawfly was unable to complete development on native L. sempervirens and non-native L. japonica. In contrast, the generalist caterpillar performed similarly on all Lonicera species. While L. maackii experienced little herbivory in the field compared to native relatives in the same habitat, laboratory assays indicate L. maackii appears to be a suitable host that escapes selection by the specialist, but L. japonica and L. sempervirens are highly resistant to it. These findings indicate that both enemy escape and resistance (to a specialist, but not a generalist herbivore) may contribute to the success of exotic Lonicera species.  相似文献   
3.
The ‘enemy release hypothesis’ argues when a species is introduced to a novel habitat, release from regulation by herbivores results in increased vigor, abundance, and distribution. The invasive Asian shrub Lonicera maackii appears to benefit from an absence of arthropod herbivores in North America. We assessed the incidence, amount, and type of herbivory occurring on L. maackii in forest edge and interior habitats and investigated differences in timing of damage. In October 2008, leaves were sampled from shrubs in forest interior and edge habitat from 8 sites in Ohio. In 2009, sampling was repeated at 3 sites in spring, summer, and fall with a distinction made between long and short branches. Leaf area removed averaged 1.83% across the 8 populations in 2008 and 3.09% across the 3 populations in 2009, with forest edge plants receiving slightly more damage than forest interior plants in 2008. Additionally, long shoots received more damage than short shoots in 2009. Damage incidence was also higher in the edge habitat and on long shoots compared to short shoots. As measured in 2009, damage accumulated steadily throughout the season. Chewing was the most prevalent type of damage (76. 8%) and low level of pathogen infection was observed (4.81%). Results indicate that levels of herbivory experienced by L. maackii are relatively consistent across sites, vary slightly with habitat and branch identity, but are likely too low to impact fitness of shrubs. These findings indicate that low amounts of arthropod herbivory occur for L. maackii across its introduced range, which may contribute to its invasive success.  相似文献   
4.
Climbing vines cause substantial ecological and economic harm, and are disproportionately represented among invasive plant species. Thus, the ability to identify likely vine invaders would enhance the effectiveness of both prevention and management. We tested whether the Weed Risk Assessment (WRA) accurately predicted the current invasion status of 84 non-native climbing vines in Florida. Seventeen percent of the species require further evaluation before risk of invasion can be determined. Of the remaining 70 species, the WRA predicted that 70% were at high risk for invasion, but only 50% of the 84 species are currently invasive in Florida. The status and risk prediction were inconsistent for 27% of the species: 15 non-invaders were predicted to be of high risk for invasion (i.e., false positive) and 4 invaders were predicted to be of low risk (i.e., false negative). Longer residence time in the flora was significantly correlated with higher invasion risk. Further investigation is necessary to identify whether residence time explains inconsistencies between risk and status conclusions, or whether the WRA over-predicts invasion risk. Nevertheless, the effects of invasive vines on native systems coupled with the influence of time on invasion status, suggest a precautionary approach is warranted when considering the introduction and management of non-native vines.  相似文献   
5.
Biological Invasions - The editorial board of this journal, Biological Invasions, aims to publish research that informs understanding of the patterns and processes of invasions and discussion of...  相似文献   
6.
We used jasmonic acid to induce first-year plants of Alliaria petiolata, a European invader that largely escapes herbivory in North America, to examine continental, population, and environmental variation in the expression and costs of induced defense traits. While absolute levels varied among populations, the induction of trypsin inhibitor activity was strong and largely uniform across five native and seven invasive populations. Trichome densities varied across populations, were absent in two of them, and only tended to be inducible by jasmonic acid. Jasmonate induction was substantially costly to leaf growth and dry biomass production, the magnitude of which varied little among populations. Continental origin of the populations explained an insignificant amount of variation in any trait. Trypsin inhibitor activity was strongly inducible across a nutrient gradient, but induction was more costly to leaf growth at low soil nutrient levels. Our results show that A. petiolata displays defense traits that are strongly inducible by jasmonic acid across populations, that jasmonate induction is substantially costly to growth with little variation among populations, and that costs of induction increase with decreased soil nutrient availability. Escaping the need to express induced defense traits and their costs in the face of reduced herbivory in introduced habitats may benefit fitness of invasive plants even in the absence of any evolutionary change in resistance in these plants.  相似文献   
7.
8.
Biological Invasions - Most published papers in ecology come from a handful of countries, and invasion science as an ecological subdiscipline is no exception. Based on the country of corresponding...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号