首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   15篇
  2024年   1篇
  2023年   3篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   15篇
  2011年   15篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   14篇
  2006年   5篇
  2005年   8篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有231条查询结果,搜索用时 140 毫秒
1.
2.
The “paradox of enrichment” predicts that increasing the growth rate of the resource in a resource-consumer dynamic system, by nutrient enrichment, for example, can lead to local instability of the system—that is, to a Hopf bifurcation. The approach to the Hopf bifurcation is accompanied by a decrease in resilience (rate of return to equilibrium). On the other hand, studies of nutrient cycling in food webs indicate that an increase in the nutrient input rate usually results in increased resilience. Here these two apparently conflicting theoretical results are reconciled with a model of a nutrient-limited resource-consumer system in which the tightly recycled limiting nutrient is explicitly modelled. It is shown that increasing nutrient input may at first lead to increased resilience and that resilience decreases sharply only immediately before the Hopf bifurcation is reached.  相似文献   
3.
We have investigated the domain of the bindin polypeptide that selectively associates with gel-phase phospholipid vesicles. We found that small trypsin fragments of bindin retain the ability to selectively associate with gel-phase vesicles. The primary amino acid sequence of bindin suggests that these peptides are derived from the central portion of the polypeptide between residues 77 and 126, which is the most hydrophobic region of bindin. We have also employed 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and novel, radioiodinated, photoactivatable derivatives of the polar head group of phosphatidylethanolamine (ASD-PE and ASA-PE) to identify membrane-associated polypeptide segments after the transfer of radiolabel from the probe to the bindin polypeptide. After photolysis, bindin was selectively labeled only from probes incorporated in gel-phase vesicles. The labeling of bindin was much more efficient from the head group probes ASA-PE and ASD-PE (8 and 2% of the total label, respectively) in comparison to the hydrophobic probe TID (less than 0.02% of the total label), suggesting that bindin is localized within the polar part of the bilayer. Protease mapping experiments with V8 protease, trypsin, and endoprotease Lys-C suggest that some of the probe label is distributed along the amino-terminal portion of bindin between residues 1 and 76 and the rest of the label is restricted to the segments between residues 77 and 126 which also selectively bind to gel-phase vesicles. The carboxyl-terminal portion of bindin between residues 127 and 236 is not labeled.  相似文献   
4.
5.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds.  相似文献   
6.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
7.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
8.
9.
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).  相似文献   
10.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号