首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   16篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   9篇
  2011年   4篇
  2010年   5篇
  2009年   10篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   12篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有141条查询结果,搜索用时 296 毫秒
1.
2.
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.  相似文献   
3.
4.
Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds. Remarkably, in vitro kinase assays revealed that the serine/threonine kinases Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) and p38alpha were among the most potently inhibited kinase targets. Thus, pyrido[2,3-d]pyrimidines did not discriminate between tyrosine and serine/threonine kinases. Instead, we found that these inhibitors are quite selective for protein kinases possessing a conserved small amino acid residue such as threonine at a critical site of the ATP binding pocket. We further demonstrated inhibition of both p38 and RICK kinase activities in intact cells upon pyrido[2,3-d]pyrimidine inhibitor treatment. Moreover, the established functions of these two kinases as signal transducers of inflammatory responses could be correlated with a potent in vivo inhibition of cytokine production by a pyrido[2,3-d]pyrimidine compound. Thus, our data demonstrate the utility of proteomic methods employing immobilized kinase inhibitors for identifying new targets linked to previously unrecognized therapeutic applications.  相似文献   
5.
6.
Partial restriction of cucumber mosaic virus (CMV) long-distance movement originating from the Capsicum annuum inbred line ’Vania’ was assessed in a doubled-haploid progeny using two screening methods: the first allowed one to assess the resistance of adult plants decapitated above the fourth leaf and inoculated on the third leaf using a common CMV strain, and the second allowed one to assess CMV resistance to long-distance movement on seedlings inoculated using an atypical CMV strain. For both resistance tests, the behavior of the F1 hybrid between ’Vania’ and the susceptible line ’H3’ indicated that partial resistance is inherited as a dominant trait. Phenotypic data from the two screening methods were correlated but the one performed on seedlings was much more severe. A subset of 184 molecular markers well-distributed over the pepper genome was selected for QTL mapping using the composite interval mapping (CIM) method. A total of seven genomic regions, including one major effect and several minor effect QTLs, were shown to be associated with partial restriction of CMV long-distance movement. These results are compared with those already obtained in pepper and also in other solanaceous crops, potato and tomato. Received: 22 March 2001 / Accepted: 9 July 2001  相似文献   
7.
Cytoplasmic calcium increments in the absence of sarco (endo) plasmic reticulum function were measured with a low-affinity fluorophore Indo-1FF in single isolated smooth muscle cells from guinea-pig urinary bladder. To evaluate the Ca(2+)-buffering properties of the myoplasm, Ca2+ influx, measured as time integral of the Ica (integral of Ica), was compared with corresponding free Ca2+ increments (delta [Ca2+]i) in the cytoplasm. The ratio between integral of ICa and delta [Ca2+]i (integral Ica/delta [Ca2+]i), reflecting the Ca2+ buffering properties of the cytosol, was in the range of 4.9-9.3 pC/microM (mean 6.2 +/- 1.2, n = 12). It remained approximately constant (6.4 +/- 1.4 pC/microM, n = 8) during recordings lasting up to 25 min, suggesting that cytoplasmic Ca2+ binding does not change markedly during cell dialysis and that the endogenous Ca2+ buffer is not significantly washed out of the cell through the patch pipette. Wash-in or wash-out of BAPTA, a mobile high-affinity Ca2+ buffer, into or from the cell markedly changed the relationship between Ca2+ influx through Ca2+ channels and delta [Ca2+]i within minutes. Changes in integral of ICa/delta [Ca2+]i during the sequence of depolarizing steps, which increased free [Ca2+]i up to 5 microM, suggested lower limits for the apparent affinity of a rapid Ca2+ buffer (16 microM) and for the total buffer concentration (530 microM). Introduction of 4 mM DPTA (Kd for Ca2+ = 81 microM) into the cell more than doubled the total cytoplasmic Ca2+ buffer capacity. These results suggest that cytoplasmic Ca2+ buffer in smooth muscle cells has a low affinity for free Ca2+. The Ca(2+)-binding ratio of the cytoplasm in most cells was estimated to be between 30 and 40. The Ca(2+)-binding ratio did not differ markedly between cells isolated from neonatal (< or = 5 days) and adult animals.  相似文献   
8.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   
9.
10.
Reversible protein phosphorylation is a key regulatory mechanism of mitotic progression. Importantly, protein kinases themselves are also regulated by phosphorylation-dephosphorylation processes; hence, phosphorylation dynamics of kinases hold a wealth of information about phosphorylation networks. Here, we investigated the site-specific phosphorylation dynamics of human kinases during mitosis using synchronization of HeLa suspension cells, kinase enrichment, and high resolution mass spectrometry. In biological triplicate analyses, we identified 206 protein kinases and more than 900 protein kinase phosphorylation sites, including 61 phosphorylation sites on activation segments, and quantified their relative abundances across three specific mitotic stages. Around 25% of the kinase phosphorylation site ratios were found to be changed by at least 50% during mitotic progression. Further network analysis of jointly regulated kinase groups suggested that Cyclin-dependent kinase- and mitogen-activated kinase-centered interaction networks are coordinately down- and up-regulated in late mitosis, respectively. Importantly, our data cover most of the already known mitotic kinases and, moreover, identify attractive candidates for future studies of phosphorylation-based mitotic signaling. Thus, the results of this study provide a valuable resource for cell biologists and provide insight into the system properties of the mitotic phosphokinome.Reversible phosphorylation is a ubiquitous posttranslational protein modification that is involved in the regulation of almost all biological processes (13). In human, 518 protein kinases have been identified in the genome that phosphorylate the majority of cellular proteins and increase the diversity of the proteome by severalfold (4). Addition of a phosphate group to a protein can alter its structural, catalytic, and functional properties; hence, kinases require tight regulation to avoid unspecific phosphorylation, which can be deleterious to cells (57). As a result, cells use a variety of mechanisms to ensure proper regulation of kinase activities (8). Importantly, most kinases are also in turn regulated through autophosphorylation and phosphorylation by other kinases, thus generating complex phosphorylation networks. In particular, phosphorylation on activation segments is a common mechanism to modulate kinase activities (911), but additional phosphorylation sites are also frequently required for fine tuning of kinase localizations and functions (12). Some kinases contain phosphopeptide binding domains that recognize prephosphorylated sites on other kinases, resulting in processive phosphorylation and/or targeting of kinases to distinct cellular locations (1316). Because such priming phosphorylation events depend on the activities of the priming kinases, these motifs act as conditional docking sites and restrict the interaction with docking kinases to a particular point in time and physiological state. In addition, phosphorylation sites may act through combinatorial mechanisms or through cross-talk with other posttranslational modifications (PTMs)1 (17, 18), thus further increasing the complexity of kinase regulatory networks.Regulation of kinases is of particular interest in mitosis as most of the mitotic events are regulated by reversible protein phosphorylation (19). During mitosis, error-free segregation of sister chromatids into the two daughter cells is essential to ensure genomic stability. Physically, this process is carried out by the mitotic spindle, a highly dynamic microtubule-based structure. After entry into mitosis, the major microtubule-organizing centers in animal cells, the centrosomes, start to increase microtubule nucleation and move to opposite poles of the cell. Throughout prometaphase, microtubules emanating from centrosomes are captured by kinetochores, protein complexes assembled on centromeric chromosomal DNA. This eventually leads to the alignment of all chromosomes in a metaphase plate. Because proper bipolar attachment of chromosomes to spindle microtubules is essential for the correct segregation of chromosomes, this critical step is monitored by a signaling pathway known as the spindle assembly checkpoint (SAC) (20). This checkpoint is silenced only after all chromosomes have attached to the spindle in a bioriented fashion, resulting in the synchronous segregation of sister chromatids during anaphase. Simultaneously, a so-called central spindle is formed between the separating chromatids, and the formation of a contractile ring initiates cytokinesis. Finally, in telophase, the chromosomes decondense and reassemble into nuclei, whereas remnants of the central spindle form the midbody, marking the site of abscission. Cyclin-dependent kinase 1 (Cdk1), an evolutionarily conserved master mitotic kinase, is activated prior to mitosis and initiates most of the mitotic events. Cdk1 works in close association with other essential mitotic kinases such as Plk1, Aurora A, and Aurora B for the regulation of mitotic progression (19, 2124). Plk1 and Aurora kinases dynamically localize to different subcellular locations to perform multiple functions during mitosis and are phosphorylated at several conserved sites. Although little is known about the precise roles of these phosphorylation sites, emerging data indicate that they are involved in regulating localization-specific functions (25, 26). Furthermore, the kinases Bub1, BubR1, and TTK (Mps1) and kinases of the Nek family play important roles in maintaining the fidelity and robustness of mitosis (19). Recently, a genome-wide RNA-mediated interference screen identified M phase phenotypes for many kinases that have not previously been implicated in cell cycle functions, indicating that additional kinases have important mitotic functions (27).Although protein phosphorylation plays a pivotal role in the regulation of cellular networks, many phosphorylation events remain undiscovered mainly because of technical limitations (28). The advent of mass spectrometry-based proteomics along with developments in phosphopeptide enrichment methods has enabled large scale global phosphoproteomics studies (29, 30). However, the number of phosphorylation sites identified on kinases is limited compared with other proteins because of their frequently low expression levels. To overcome this problem, small inhibitor-based kinase enrichment strategies were developed, resulting in the identification of more than 200 kinases from HeLa cell lysates (31, 32). This method was also used recently to compare the phosphokinomes during S phase and M phase of the cell cycle, resulting in the identification of several hundreds of M phase-specific kinase phosphorylation sites (31). In the present study, we address the dynamics of the phosphokinome during mitotic progression using large scale cell synchronization at three distinct mitotic stages, small inhibitor-based kinase enrichment, and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry. Thus, we determined the mitotic phosphorylation dynamics of more than 900 kinase phosphorylation sites and identified distinctly regulated kinase interaction networks. Our results provide a valuable resource for the dynamics of the kinome during mitotic progression and give insight into the system properties of kinase interaction networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号