首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2551篇
  免费   117篇
  2668篇
  2024年   10篇
  2023年   10篇
  2022年   35篇
  2021年   41篇
  2020年   44篇
  2019年   65篇
  2018年   60篇
  2017年   53篇
  2016年   72篇
  2015年   115篇
  2014年   142篇
  2013年   182篇
  2012年   211篇
  2011年   227篇
  2010年   123篇
  2009年   76篇
  2008年   120篇
  2007年   129篇
  2006年   126篇
  2005年   111篇
  2004年   130篇
  2003年   127篇
  2002年   108篇
  2001年   33篇
  2000年   18篇
  1999年   20篇
  1998年   15篇
  1997年   20篇
  1996年   10篇
  1995年   10篇
  1993年   8篇
  1992年   12篇
  1990年   8篇
  1988年   9篇
  1987年   11篇
  1986年   7篇
  1985年   14篇
  1984年   14篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1975年   6篇
  1973年   7篇
  1972年   9篇
  1971年   6篇
  1969年   5篇
  1964年   5篇
排序方式: 共有2668条查询结果,搜索用时 15 毫秒
1.
2.
The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c1 are assembled by the cytochrome c heme lyases (CCHL and CC1HL) and by Cyc2p, a putative redox protein. A cytochrome c1 mutant with a CAPCH heme-binding site instead of the wild-type CAACH is strictly dependent upon Cyc2p for assembly. In this context, we found that overexpression of CC1HL, as well as mutations of the proline in the CAPCH site to H, L, S, or T residues, can bypass the absence of Cyc2p. The P mutation was postulated to shift the CXXCH motif to an oxidized form, which must be reduced in a Cyc2p-dependent reaction before heme ligation. However, measurement of the redox midpoint potential of apocytochrome c1 indicates that neither the P nor the T residues impact the thermodynamic propensity of the CXXCH motif to occur in a disulfide vs. dithiol form. We show instead that the identity of the second intervening residue in the CXXCH motif is key in determining the CCHL-dependent vs. CC1HL-dependent assembly of holocytochrome c1. We also provide evidence that Cyc2p is dedicated to the CCHL pathway and is not required for the CC1HL-dependent assembly of cytochrome c1.THE c-type cytochromes, also referred to as cytochrome c, represent a universal class of heme-containing proteins that function as electron carriers in the energy-transducing pathways of bacteria, plastids, and mitochondria (Thöny-Meyer 1997; Nakamoto et al. 2000; Bonnard et al. 2010). Because cytochromes c carry a heme covalently attached to a CXXCH motif, they constitute an attractive object of study to address the question of cofactor protein assembly. The biochemical requirements for cytochrome c assembly were deduced from in vivo and in vitro studies, and the conclusion is that both apocytochromes c and heme are transported independently across at least one biological membrane and maintained as reduced prior to catalysis of the heme attachment reaction (Allen et al. 2003; Hamel et al. 2009; Kranz et al. 2009; Sanders et al. 2010). Bacterial cytochromes c are assembled in the periplasmic space, a compartment where cysteine pairs in proteins form disulfide bonds in reactions catalyzed by dedicated enzymes (Inaba 2009; Kadokura and Beckwith 2010). The current thinking holds that a c-type apocytochrome is a substrate of the disulfide bond-forming pathway, which introduces an intramolecular disulfide between the two cysteines of the CXXCH sequence (Allen et al. 2003; Sanders et al. 2010). This disulfide needs to be reduced to a dithiol to provide free sulfhydryls for the heme ligation. Consistent with this view is the fact that groups of specific oxido-reductases that constitute a transmembrane dithiol-disulfide relay from the cytosol to the periplasmic space have been shown to function as c-type cytochrome assembly factors (Allen et al. 2003; Kadokura et al. 2003; Mapller and Hederstedt 2006; Sanders et al. 2010). The proposal that the components of this pathway control the in vivo redox status of the CXXCH sulfhydryls has been inferred from the presence of motifs in their protein sequences that are consistent with a function in redox chemistry and also from the demonstration that their recombinant forms participate in dithiol–disulfide exchange reactions (Monika et al. 1997; Setterdahl et al. 2000). Moreover, the ability of exogenous thiol compounds to bypass the lack of these factors in vivo substantiates the view that the redox components have a disulfide-reducing activity in the pathway (e.g., Sambongi and Ferguson 1994; Fabianek et al. 1998; Beckett et al. 2000; Deshmukh et al. 2000; Bardischewsky and Friedrich 2001; Erlendsson and Hederstedt 2002; Erlendsson et al. 2003; Feissner et al. 2005; Turkarslan et al. 2008).While the role of these pathways is well established in bacteria, much less is known about the components that catalyze thiol/disulfide chemistry in the mitochondrial intermembrane space (IMS), which is topologically equivalent to the bacterial periplasm. By analogy with the bacterial pathways, the participation of redox-active factors that catalyze thiol formation is expected, as the mitochondrial IMS houses two c-type cytochromes, the soluble cytochrome c and the membrane-bound cytochrome c1, both of which function in respiration. In fungi, heme attachment to apocytochromes c and c1 is dependent upon the IMS resident cytochrome c and c1 heme lyases, CCHL and CC1HL, although the exact role of these lyases in the assembly process is still unclear (Dumont et al. 1987; Zollner et al. 1992). Conversion of apocytochrome to holocytochrome c depends only on CCHL, while apocytochrome c1 can be acted upon by both CCHL and CC1HL (Matner and Sherman 1982; Dumont et al. 1987; Stuart et al. 1990; Zollner et al. 1992; Bernard et al. 2003). In animals, apoforms of cytochromes c and c1 are assembled by a unique heme lyase, HCCS, which carries both the CCHL and CC1HL activities (Prakash et al. 2002; Schwarz and Cox 2002; Bernard et al. 2003).Cyc2p, a component first described as a mitochondrial biogenesis factor in yeast (Matner and Sherman 1982; Dumont et al. 1993; Pearce et al. 1998; Sanchez et al. 2001), was recently rediscovered in the context of cytochrome c1 maturation (Bernard et al. 2003). Cyc2p is located at the mitochondrial inner membrane with its C-terminal domain containing a non-covalently bound FAD exposed to the IMS (Bernard et al. 2005). A redox function for Cyc2p is likely based on the finding that a recombinant form of the molecule exhibits a NAD(P)H-dependent reductase activity (Bernard et al. 2005). However, as Cyc2p activity is not essential for the maturation process, a functional redundancy was postulated based on the fact that a cyc2-null mutant still assembles holoforms of cytochromes c and c1 (Bernard et al. 2005). The absolute requirement of Cyc2p was revealed via genetic analysis of the cyc2-null cyt1-34 combination that displays a synthetic respiratory-deficient phenotype with loss of holocytochrome c1 assembly (Bernard et al. 2005). The cyt1-34 mutation maps to the gene encoding cytochrome c1 and results in a CAPCH heme-binding site replacing the wild-type CAACH site (Bernard et al. 2005). The synthetic interaction is specific for the cyt1-34 allele carrying the A-to-P mutation and is not observed in a cyc2-null cyt1-48 strain carrying an A-to-D mutation at the heme-binding site of apocytochrome c1 (Bernard et al. 2005). The fact that Cyc2p becomes essential when the cytochrome c1 heme-binding site carries an A-to-P mutation suggests that the CXXCH motif could be the target of Cyc2p action in vivo. One possible interpretation for this observation is that the P residue alters the reactivity of the cysteinyl thiols to redox chemistry so that the apocytochrome c1 CAPCH heme-binding site occurs in an oxidized (disulfide) form, which must be reduced in a Cyc2p-dependent reaction before heme attachment can occur.In this article, we have undertaken a genetic approach to elucidate this pathway and searched for suppressors that alleviate the respiratory deficiency of the cyc2-null cyt1-34 strain. Either overexpression of CC1HL or replacement of the P mutation in the heme-binding site by H, L, S, or T residues restore the assembly of holocytochrome c1. In vitro measurement of redox potential of apoforms of CA(A/P/T)CH cytochrome c1 indicates that there is no change in the thermodynamic stability of the disulfide at the CXXCH motif that could account for the Cyc2p-dependent assembly of cytochrome c1. Genetic studies reveal that the replacement of the second A residue at the CAACH motif by H, L, P, S, and T residues is key in determining the conversion of apocytochrome c1 to its corresponding holoform via the CCHL and/or CC1HL-dependent pathway. We also demonstrate that Cyc2p is a component dedicated to the CCHL pathway and is not required for the CC1HL-dependent assembly of cytochrome c1. We propose that the CAPCH cytochrome c1 is strictly dependent upon CCHL and Cyc2p for its assembly but becomes a substrate of CC1HL upon overexpression of CC1HL or in the presence of H, L, S, or T mutations.  相似文献   
3.
4.
    
A pyrene dihydrodioxin has been synthesized, shown to bind to duplex DNA by intercalation, and cleave the phiX 174 supercoiled plasmid upon irradiation with UV light. This compound also exhibits cytotoxic activity at the micromolar range in a number of human cancer cell lines.  相似文献   
5.
    
Dung beetles fulfill several key functions in ecosystems but their role as secondary seed dispersers is probably one of the most complex ones. Various factors, such as seed characteristics, dispersal pattern induced by the primary disperser, season, and habitat, can affect the seed–beetle interaction. Particularly little is known about the fate of seeds primarily dispersed in small feces. The aim of this study was to investigate the effects of these factors on the dung beetle community (species composition, number and size of individuals) and its consequences on burial occurrence and depth of seeds primarily dispersed by two tamarin species. We captured dung beetles in a Peruvian rain forest with 299 dung‐baited pitfall traps to characterize the dung beetle community. Seed burial occurrence and depth were assessed by marking in situ 551 dispersed seeds in feces placed in cages. Among these seeds, 22.5 percent were buried by dung beetles after 2 d. We observed a significant effect of the amount of dung, season, time of deposition, and habitat on the number of individuals and species of dung beetles, as well as on seed burial occurrence and depth, while the tamarin species significantly influenced only the number and the size of dung beetles. This seed dispersal loop is particularly important for forest regeneration: small to large seeds dispersed by tamarins in secondary forest can be buried by dung beetles. These seeds can thus benefit from a better protection against predation and a more suitable microenvironment for germination, potentially enhancing seedling recruitment.  相似文献   
6.
    
Listeria monocytogenes is an intracellular bacterial pathogen that causes life-threatening disease. The mechanisms used by L. monocytogenes to invade non-professional phagocytic cells are not fully understood. In addition to the requirement of bacterial determinants, host cell conditions profoundly influence infection. Here, we have shown that inhibition of the RhoA/ROCK pathway by pharmacological inhibitors or RNA interference results in increased L. monocytogenes invasion of murine fibroblasts and hepatocytes. InlF, a member of the internalin multigene family with no known function, was identified as a L. monocytogenes -specific factor mediating increased host cell binding and entry. Conversely, activation of RhoA/ROCK activity resulted in decreased L. monocytogenes adhesion and invasion. Furthermore, virulence of wild-type bacteria during infection of mice was significantly increased upon inhibition of ROCK activity, whereas colonization and virulence of an inlF deletion mutant was not affected, thus supporting a role for InlF as a functional virulence determinant in vivo under specific conditions. In addition, inhibition of ROCK activity in human-derived cells enhanced either bacterial adhesion or adhesion and entry in an InlF-independent manner, further suggesting a host species or cell type-specific role for InlF and that additional bacterial determinants are involved in mediating ROCK-regulated invasion of human cells.  相似文献   
7.
1. The concentration of Bromophenol Blue used as tracking dye in polyacrylamide-gel electrophoresis affected the resolution of rat neurophysins. 2. A final dye concentration of 1mug/ml in the tris-glycine running buffer was found to give the best results. 3. The presence of two major and one minor neurophysin(s) in the rat was confirmed. 4. The two major proteins were found to re-run as single discrete bands, which had the same mobilities in the absence of dye and different mobilities in its presence.  相似文献   
8.
9.
The poor success in controlling small bowel (SB) allograft rejection is partially attributed to the unique immune environment in the donor intestine. We hypothesized that Ag-induced activation of donor-derived T cells contributes to the initiation of SB allograft rejection. To address the role of donor T cell activation in SB transplantation, SB grafts from DO11.10 TCR transgenic mice (BALB/c, H-2L(d+)) were transplanted into BALB/c (isografts), or single class I MHC-mismatched (L(d)-deficient) BALB/c H-2(dm2) (dm2, H-2L(d-)) mutant mice (allografts). Graft survival was followed after injection of control or antigenic OVA(323-339) peptide. Eighty percent of SB allografts developed severe rejection in mice treated with antigenic peptide, whereas <20% of allografts were rejected in mice treated with control peptide (p < 0.05). Isografts survived >30 days regardless of OVA(323-339) administration. Activation of donor T cells increased intragraft expression of proinflammatory cytokine (IFN-gamma) and CXC chemokine IFN-gamma-inducible protein-10 mRNA and enhanced activation and accumulation of host NK and T cells in SB allografts. Treatment of mice with neutralizing anti-IFN-gamma-inducible protein-10 mAb increased SB allograft survival in Ag-treated mice (67%; p < 0.05) and reduced accumulation of host T cells and NK cells in the lamina propria but not mesenteric lymph nodes. These results suggest that activation of donor T cells after SB allotransplantation induces production of a Th1-like profile of cytokines and CXC chemokines that enhance infiltration of host T cells and NK cells in SB allografts. Blocking this pathway may be of therapeutic value in controlling SB allograft rejection.  相似文献   
10.
Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the development of Hordeum vulgare x H. bulbosum hybrid embryos that is restricted to an early stage of development. In almost all embryos most of the H. bulbosum chromatin undergoes a fast rate of elimination within nine days after pollination. There are differences in the mitotic behaviour between the parental chromosomes, with H. bulbosum chromatids segregating asymmetrically at anaphase. We provide evidence for a chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei differs and heterochromatinization and disintegration of the nuclear envelope of micronuclei are the final steps of chromosome elimination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号