首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   20篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   8篇
  2017年   4篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   12篇
  2012年   18篇
  2011年   28篇
  2010年   12篇
  2009年   10篇
  2008年   17篇
  2007年   19篇
  2006年   9篇
  2005年   8篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
  1969年   2篇
  1966年   1篇
  1964年   2篇
排序方式: 共有267条查询结果,搜索用时 203 毫秒
1.
A well saturated genomic map is a necessity for a breeding program based on marker assisted selection. To this end, we are developing genomic maps for cowpea (Vigna unguiculata 2N = 22) and mung bean (Vigna radiata 2N = 22) based on restriction fragment length polymorphism (RFLP) markers. Using these maps, we have located major quantitative trait loci (QTLs) for seed weight in both species. Two unlinked genomic regions in cowpea contained QTLs accounting for 52.7% of the variation for seed weight. In mung bean there were four unlinked genomic regions accounting for 49.7% of the variation for seed weight. In both cowpea and mung bean the genomic region with the greatest effect on seed weight spanned the same RFLP markers in the same linkage order. This suggests that the QTLs in this genomic region have remained conserved through evolution. This inference is supported by the observation that a significant interaction (i.e., epistasis) was detected between the QTL(s) in the conserved region and an unlinked RFLP marker locus in both species.  相似文献   
2.
The peroxidase cytochemistry and the ultrastructural characteristics of resident macrophages in fetal rat liver have been investigated. Livers of 10-, 11-, 14-, 17-, and 20-day-old fetuses were fixed by immersion or perfusion, incubated for peroxidase, and processed for transmission electron microscopy. Some 17- and 20-day-old fetuses were injected prior to sacrifice with carbon or 0.8-μm latex particles through the umbilical vein. Some livers were additionally processed for scanning electron microscopy (SEM). The endogenous peroxidase was present in the nuclear envelope (NE) and endoplasmic reticulum (ER) of fetal macrophages with a negative reaction in the Golgi apparatus, a distribution pattern identical to that in Kupffer cells of adult rat liver. Such peroxidase-positive cells avidly took up the injected latex and carbon particles and were the only cell type in fetal liver involved in erythrophagocytosis. Furthermore, they were associated with erythropoietic elements, forming close contacts with such cells, especially normoblasts. The peroxidase pattern in leukopoietic cells differed at all stages of maturation from that in macrophages. By SEM the macrophages exhibited ruffles and lamellopodia on their surfaces and protruded often into the lumen of fetal sinusoids. Macrophages in fetal liver underwent mitotic divisions. The macrophages were first seen on gestation day 11, whereas the first mature monocytes were found on gestation day 17. These observations suggest that resident macrophages in fetal rat liver form a self-replicating cell line independent of the monocytopoietic series, although they may both arise from a common precursor cell.  相似文献   
3.
4.
5.
Hepatocellular carcinoma (HCC) is one of the lethal and difficult-to-cure cancers worldwide. Owing to the late diagnosis and drug resistance of malignant hepatocytes, treatment of this cancer by conventional chemotherapy agents is challenging, and researchers are seeking new alternative treatment options to overcome therapy resistance in this neoplasm. RNA interference (RNAi) is a potent and specific approach in targeting gene expression and has emerged as a novel therapeutic tool for many diseases, including cancers. Small interfering RNA (siRNA) is a type of RNAi that is produced intracellularly from exogenous synthetic oligonucleotides and can selectively knock down target gene expression in a sequence-specific manner. Various factors play roles in the initiation and progression of HCC and provide multiple candidate targets for siRNA intervention. In addition, due to the liver's unique architecture and availability of some hepatic siRNA delivery methods, this organ has received much more attention as a target tissue for such oligonucleotide action. Recent advances in designing nanoparticle systems for the in vivo delivery of siRNAs have markedly enhanced the potency of siRNA-mediated gene silencing under clinical development for HCC therapy. The utility of siRNAs as anti-HCC agents is the subject of the current review. siRNA-based gene therapies could be one of the main feasible approaches for HCC therapy in the future.  相似文献   
6.
7.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.  相似文献   
8.
Mammalian peroxisomes and reactive oxygen species   总被引:12,自引:5,他引:7  
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor- on peroxisome function and peroxisome proliferator activated receptor-. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5–/– knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号