首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
  8篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  1991年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
该研究选用2个抗旱能力相似但旱后恢复能力存在显著差异的玉米品种‘P3’和‘郑单958’为材料,采用盆栽称重控水法在苗期进行干旱及复水处理,通过测定其生长、水分状况、光合参数、叶绿素荧光参数以及叶绿素含量在干旱及复水过程中的变化规律,探讨干旱及复水过程中生理生化响应与旱后恢复能力的关系。结果发现:(1)抗旱性相同的2个玉米品种在干旱复水后的生长恢复能力表现为‘P3’显著强于‘郑单958’。(2)干旱胁迫后,‘郑单958’和‘P3’的叶片相对含水量差异不显著,但‘P3’能维持较高的叶水势、PSⅡ最大光化学效率和叶绿素含量。(3)经干旱胁迫复水后,‘P3’的净光合速率,PSⅡ最大光化学效率和气孔导度恢复速度快于‘郑单958’,说明‘P3’光合损失恢复能力高于‘郑单958’。研究表明,玉米品种‘P3’的旱后复水生长恢复能力较强,因‘P3’在干旱胁迫下能维持较高的Fv/Fm值和叶绿素含量,光系统的损伤较轻,而且复水后也能较快的恢复;在干旱过程中减轻干旱胁迫对植物光合系统的伤害是旱后复水快速恢复生长的基础,而在复水后快速修复光系统损失能够加快植物复水的恢复速度。  相似文献   
2.
普通番茄四倍体与二倍体杂交的杂种不育性研究   总被引:4,自引:0,他引:4  
申书兴  邹道谦 《遗传学报》1991,18(6):520-524
以普通番茄的四倍体为母本与二倍体杂交时,花粉萌发、花粉管生长及双受精过程都正常;对受精的胚珠形态结构观察得知:4天前幼胚和胚乳发育正常,授粉后4天胚乳出现异常开始退化,5天时这种异常现象更明显,第7天胚乳已完全解体。幼胚在胚乳完全解体前发育正常,而胚乳解体后,幼胚也开始解体。所以普通番茄二倍体与四倍体杂交的杂种不育的原因,在于胚乳败育以及胚的死亡。  相似文献   
3.
Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.  相似文献   
4.
Due to chemotherapeutic drug resistance, tumor recurrence is common in patients with colorectal cancer (CRC) and chemo-resistant patients are often accompanied by defects in the mismatch repair system (MMR). Our previous study has shown that Candida tropicalis (C. tropicalis) is closely related to the occurrence and development of colorectal cancer, but whether this conditional pathogenic fungus is involved in chemotherapy needs further investigation. Here we found that C. tropicalis promoted chemotherapy resistance of colon cancer to oxaliplatin. Compared with oxaliplatin-treated group, the expression of functional MMR proteins in tumors were decreased in C.tropicalis/oxaliplatin -treated group, while the glycolysis level of tumors was up-regulated and the production of lactate was significantly increased in C.tropicalis/oxaliplatin -treated group. Inhibiting lactate production significantly alleviated the chemoresistance and rescued the decreased expression of MMR caused by C. tropicalis. Furthermore, we found that lactate down-regulated the expression of MLH1 through the GPR81-cAMP-PKA-CREB axis. This study clarified that C. tropicalis promoted chemoresistance of colon cancer via producing lactate and inhibiting the expression of MLH1, which may provide novel ideas for improving CRC chemotherapy effect.  相似文献   
5.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   
6.
苗期玉米叶片碳氮平衡与干旱诱导的叶片衰老之关系   总被引:1,自引:0,他引:1  
为了探究干旱诱导的碳氮平衡破坏与干旱诱导的叶片衰老之间的关系,该实验以8个在干旱胁迫下叶片衰老进程有明显差异的玉米品种为实验材料,采用PEG模拟干旱处理,通过测定光合速率、叶绿素含量和叶绿素荧光参数等叶片衰老指标以及非结构性碳水化合物(可溶性糖、淀粉)和全氮含量等变化,分析玉米中干旱诱导的叶片衰老与叶片中碳氮平衡(碳氮比)之间的关系。结果显示:(1)干旱胁迫下,8个玉米品种叶片净光合速率受到严重抑制,Fv/Fm大幅下降,叶绿素含量显著降低,说明干旱诱导了玉米叶片的衰老;(2)干旱诱导玉米叶片衰老的同时,8个玉米品种的叶片中可溶性糖含量显著升高,淀粉含量小幅上升,全氮含量大幅降低,碳氮比显著升高,碳氮平衡遭到了破坏;(3)8个玉米品种叶片的叶绿素含量与非结构性碳水化合物含量以及碳氮比呈极显著负相关关系,与全氮含量呈极显著正相关关系。因此,碳氮代谢与干旱诱导的叶片衰老紧密联系,碳氮平衡可能参与了干旱诱导的叶片衰老调控。  相似文献   
7.
Li  Jie  Yu  Daoqian  Qanmber  Ghulam  Lu  Lili  Wang  Lingling  Zheng  Lei  Liu  Zhao  Wu  Huanhuan  Liu  Xiaodong  Chen  Quanjia  Li  Fuguang  Yang  Zuoren 《中国科学:生命科学英文版》2019,62(1):63-75
Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region.A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase(GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35 S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35 S::GhKLCR1 lines after 300-mmol L~(-1) mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.  相似文献   
8.
Salt usually stresses plants in two ways, osmotic stress and ion toxicity. Plant responds to salinity in two distinct phases through time. It is known that silicon (Si) could alleviate salt stress by decreasing the Na+ accumulated in the leaf. In order to determine the function of Si in the two-phase growth response (osmotic and ion toxicity) to salinity, we selected the wheat cultivar “Changwu 134” out of 10 wheat cultivars, and confirmed that it responds to salinity in two distinct phases through time. The fresh weight, leaf area, and leaf Na+ concentration were measured during 31 days of 120 mM NaCl supplemented with 1 mM Si treatment. The results revealed that the growth of plants under salinity conditions both with and without Si application were in accordance with the two-phase growth model. Si alleviated the salt stress in the both two-phase growth, but the alleviative effects were more pronounced in the osmotic stress phase than ion toxicity phase. These results clearly showed that Si can enhance plant salt tolerance by alleviating the salt-induced osmotic stress.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号