首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   21篇
  国内免费   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   15篇
  1991年   9篇
  1990年   14篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   11篇
  1985年   8篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1981年   6篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1977年   1篇
  1976年   8篇
  1975年   8篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1920年   1篇
排序方式: 共有275条查询结果,搜索用时 140 毫秒
1.
2.
We have investigated the influence of transmembrane pH gradients across large unilamellar vesicle membranes on the transbilayer distributions of simple lipids with weak base and weak acid characteristics. Trinitrobenzenesulfonic acid labeling results consistent with a rapid and complete migration of stearylamine and sphingosine to the inner monolayer of the large unilamellar vesicles are observed when the large unilamellar vesicles' interior is acidic. Alternatively, when the vesicle interior is basic, oleic and stearic acid cannot be removed by external bovine serum albumin, indicating a localization in the inner monolayer. Moreover, effects corresponding to the decrease in external surface charge predicted upon the migration of stearylamine or stearic acid to the inner monolayer are readily detected employing ion exchange chromatography. These results are consistent with transbilayer distributions of these agents dictated by a Henderson-Hasselbach equilibrium. The possible implications for metabolic regulation by pH gradients, as well as factors giving rise to phospholipid transbilayer asymmetry, are discussed.  相似文献   
3.
Unilamellar vesicles composed of phosphatidylcholine (PC) and either phosphatidic acid (PA) or phosphatidylglycerol (PG) partition to the upper poly(ethylene glycol) (PEG)-rich phase of a charge-sensitive 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 7, consistent with the vesicles bearing a net negative charge. When prepared in the presence of a pH gradient (interior acidic), PC/PA vesicles exhibit an increased partition to the top PEG-rich phase, consistent with a redistribution of the PA from the inner to the outer monolayer of the vesicle bilayer. Conversely, when prepared in the presence of a pH gradient (interior basic), PC/PG vesicles exhibit a decreased top-phase partition, consistent with a redistribution of the PG from the outer to the inner monolayer of the vesicle bilayer. Unilamellar vesicles composed of PC and stearylamine partition to the lower dextran-rich phase of a 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 8.5, consistent with the vesicles bearing a net positive charge. When prepared in the presence of a pH gradient (interior acidic), conditions under which the stearylamine is trapped on the inner monolayer of the bilayer, the vesicles now partition predominantly to the interface in a manner similar to vesicles composed of PC alone. These results demonstrate that partitioning in aqueous two-phase polymer systems is a sensitive method for monitoring the asymmetry of charged lipids in model membrane systems and also suggests that partitioning in charge-sensitive systems depends only on the physical nature of the exterior surface of the membrane.  相似文献   
4.
The kinetics of the partitioning of lipid vesicles containing acidic phospholipids in aqueous two-phase polymer systems are dependent upon the vesicle size; the larger the vesicles, the more readily they absorb to the interfaces between the two polymer phases and hence are cleared from the top phase as phase separation proceeds. The partitioning of neutral lipid vesicles is principally to the bulk interface and is the same in phase systems of both low and high electrostatic potential difference between the two phases (delta psi). The incorporation of negatively charged lipids has two effects upon partition. First, vesicles with negatively charged lipids exhibit increased bottom phase partitioning in phases of low delta psi due to an enhanced wetting of the charged lipids by the lower phase. Second, the presence of a negatively charged group on the vesicle surface results in increased partition to the interface and top phase in phase systems of high delta psi. Differences observed in the partition of vesicles containing various species of negatively charged lipid thus reflect a competition between these two opposing factors.  相似文献   
5.
Lipid polymorphism and hydrocarbon order   总被引:4,自引:0,他引:4  
The use of 2H nuclear magnetic resonance for the characterization of the polymorphic behavior of lipids is illustrated. Different lipid phase preferences may be expected to influence the orientational order and its variation along the acyl chains. Several results are presented to support that view. An increase of motional freedom and a redistribution of the order along the acyl chains are observed during the lamellar-to-hexagonal phase transition, showing that the order profile is sensitive to the lipid phase symmetry. In addition, if the preferences for nonlamellar phases are not expressed explicitly, the presence of "nonbilayer" lipids constrained in bilayer environment induces increased hydrocarbon order. This suggests that order parameters of the acyl chains and lipid polymorphic tendencies are intimately related.  相似文献   
6.
We have constructed a plasmid which contains 22 copies of a 147 bp DNA fragment which contains the major DNA gyrase cleavage site from plasmid pBR322 (located at base-pair 990). We have found that this fragment is efficiently bound and cleaved by gyrase. The selectivity for the sequence corresponding to position 990 in pBR322 is maintained even when this site is located only 15 bp from one end of the 147 bp fragment. A strategy for the specific incorporation of a single thiophosphoryl linkage into the 147 bp fragment has been developed, and gyrase has been shown to catalyse efficient cleavage of fragments bearing phosphorothioate linkages at the gyrase cleavage site in one or both strands.  相似文献   
7.
The uptake of dibucaine into large unilamellar vesicles in response to proton gradients (delta pH; inside acidic) or membrane potentials (delta psi; inside negative) has been investigated. Dibucaine uptake in response to delta pH proceeds rapidly in a manner consistent with permeation of the neutral (deprotonated) form of the drug, reaching a Henderson-Hasselbach equilibrium where [dibucaine]in/[dibucaine]out = [H+]in/[H+]out and where the absolute amount of drug accumulated is sensitive to the buffering capacity of the interior environment. Under appropriate conditions, high absolute interior concentrations of the drug can be achieved (approximately 120 mM) in combination with high trapping efficiencies (in excess of 90%). Dibucaine uptake in response to delta psi proceeds more than an order of magnitude more slowly and cannot be directly attributed to uptake in response to the delta pH induced by delta psi. This induced delta pH is too small (less than or equal to 1.5 pH units) to account for the transmembrane dibucaine concentration gradients achieved and does not come to electrochemical equilibrium with delta psi. Results supporting the possibility that the charged (protonated) form of dibucaine can be accumulated in response to delta psi were obtained by employing a permanently positively charged dibucaine analogue (N-methyldibucaine). Further, the results suggest that delta psi-dependent uptake may depend on formation of a precipitate of the drug in the vesicle interior. The uptake of dibucaine into vesicles in response to ion gradients is of direct utility in drug delivery and controlled release applications and is related to processes of drug sequestration by cells and organelles in vivo.  相似文献   
8.
Vesicles of variable sizes produced by a rapid extrusion procedure   总被引:41,自引:0,他引:41  
Previous studies from this laboratory have shown that large unilamellar vesicles can be efficiently produced by extrusion of multilamellar vesicles through polycarbonate filters with a pore size of 100 nm (Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R. (1985) Biochim. Biophys. Acta 812, 55-65). In this work it is shown that similar procedures can be employed for the production of homogeneously sized unilamellar or plurilamellar vesicles by utilizing filters with pore sizes ranging from 30 to 400 nm. The unilamellarity and trapping efficiencies of these vesicles can be significantly enhanced by freezing and thawing the multilamellar vesicles prior to extrusion. This procedure is particularly applicable when very high lipid concentrations (400 mg/ml) are used, where extrusion of the frozen and thawed multilamellar vesicles through 100 and 400 nm filters results in trapping efficiencies of 56 and 80%, respectively. Freeze-fracture electron microscopy revealed that vesicles produced at these lipid concentrations exhibit size distributions and extent of multilamellar character comparable to systems produced at lower lipid levels. These results indicate that the freeze-thaw and extrusion process is the technique of choice for the production of vesicles of variable sizes and high trapping efficiency.  相似文献   
9.
As a prerequisite for the use of liposomes for delivery of biologically active agents, techniques are required for the efficient and rapid entrapment of such agents in liposomes. Here we review the variety of procedures available for trapping hydrophilic and hydrophobic compounds. Considerations which are addressed include factors influencing the choice of a particular liposomal system and techniques for the passive entrapment of drugs in multilamellar vesicles and unilamellar vesicles. Attention is also paid to active trapping procedures relying on the presence of (negatively) charged lipid or transmembrane ion gradients. Such gradients are particularly useful for concentrating lipophilic cationic drugs inside liposomes, allowing trapping efficiencies approaching 100%.  相似文献   
10.
Herpes simplex virus type I (HSV-I)-induced thymidine kinase has been shown to catalyze phosphoryl transfer from adenosine 5'-[gamma-(S)-16O,17O,18O]triphosphate to thymidine with inversion of configuration at phosphorus. The simplest interpretation of this result is that phosphoryl transfer occurs by a single in-line group transfer between ATP and thymidine within the ternary enzyme complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号