首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   25篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   4篇
  1968年   1篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
  1947年   1篇
排序方式: 共有88条查询结果,搜索用时 19 毫秒
1.
Pathways of NADPH formation in Escherichia coli.   总被引:1,自引:0,他引:1  
  相似文献   
2.
I investigated the effects of osmotic stress on the synthesis and catabolism of proline in Salmonella typhimurium by measuring the intracellular and extracellular proline levels in various strains. In the wild-type strain, exposure to 0.8 M NaCl did not cause a significant change in the intracellular proline level; however, it brought about a 6.5-fold increase in the intracellular glutamate pool size. These results indicate that gamma-glutamyl kinase is inhibited by proline in wild-type cells in media of normal or elevated osmolarity. I also tested whether proline is subject to turnover in cells wild type with respect to the enzymes of the proline degradation pathway. In strains that were wild type for proline biosynthesis, the loss of the proline catabolic enzymes, due to putA mutations, did not result in a statistically significant increase in the intracellular proline levels. Therefore, in the wild-type strain, proline turnover does not seem to be important for control of the intracellular proline levels. However, in a proline-overproducing mutant, a putA lesion caused a threefold increase in the intracellular proline level and a 6.5-fold increase in the extracellular proline level, indicating that proline is subject to turnover in the overproducing mutant. The proline-overproducing mutants excreted large quantities of the proline into the culture medium; osmotic stress altered the partitioning of proline such that the ratio of intracellular to extracellular levels of proline increased with increased osmotic stress. The increased cellular retention of proline in media of high osmolarity is probably due to the functioning of the ProP and ProU proline transport systems, which are stimulated under conditions of osmotic stress.  相似文献   
3.
The osmoregulatory pathways of the moderately halophilic bacterium Halomonas elongata DSM 3043 have been investigated. This strain grew optimally at 1.5 to 2 M NaCl in M63 glucose-defined medium. It required at least 0.5 M NaCl for growth, which is a higher concentration than that exhibited by the H. elongata type strain ATCC 33173. Externally provided betaine, choline, or choline-O-sulfate (but not proline, ectoine, or proline betaine) enhanced the growth of H. elongata on 3 M NaCl-glucose-M63 plates, demonstrating the utilization of these compounds as osmoprotectants. Moreover, betaine and choline stimulated the growth of H. elongata DSM 3043 over the entire range of salinity, although betaine was more effective than choline at salinities below and above the optimum. We found that H. elongata DSM 3043 has at least one high-affinity transport system for betaine (K(m) = 3.06 microM and Vmax = 9.96 nmol of betaine min(-1) mg of protein(-1)). Competition assays demonstrated that proline betaine and ectoine, but not proline, choline, or choline-O-sulfate, are also transported by the betaine permease. Finally, thin-layer chromatography and 13C-nuclear magnetic resonance analysis showed that exogenous choline was taken up and transformed to betaine by H. elongata, demonstrating the existence of a choline-glycine betaine pathway in this moderately halophilic bacterium.  相似文献   
4.
Strain JC10240 (Hfr PO45 srlC300::Tn10 recA56 thr-300 ilv-318 rpsE300) was constructed. On account of the close linkage of Tn10 to recA56, the latter can be moved to other Escherichia coli (and closely related) strains in transductional or conjugational crosses selecting resistance to tetracycline.  相似文献   
5.
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-13C]-, [2-13C]-, [6-13C]-, and [U-13C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.  相似文献   
6.
Moderate osmolality can stimulate bacterial growth at temperatures near the upper limit for growth. We investigated the mechanism by which high osmolality enhances the thermotolerance of Salmonella enterica serovar Typhimurium, by isolating bacteriophage MudI1734-induced insertion mutations that blocked the growth-stimulatory effect of 0.2 M NaCl at 45 degrees C. One of these mutations proved to be in the seqA gene (a regulator of initiation of DNA synthesis). Because this gene is cotranscribed with pgm (which encodes phosphoglucomutase), it is likely to be polar on the expression of the pgm gene. Pgm catalyzes the conversion of glucose-6-phosphate to glucose-1-phosphate during growth on glucose, and therefore loss of Pgm results in a deficiency in a variety of cellular constituents derived from glucose-1-phosphate, including trehalose. To test the possibility that the growth defect of the seqA::MudI1734 mutant at high temperature in medium of high osmolality is due to the block in trehalose synthesis, we determined the effect of an otsA mutation, which inactivates the first step of the trehalose biosynthetic pathway. The otsA mutation caused a growth defect at 45 degrees C in minimal medium containing 0.2 M NaCl that was similar to that caused by the pgm mutation, but otsA did not affect growth rate in this medium at 37 degrees C. These results suggest that the growth defect of the seqA-pgm mutant at high temperature could be a consequence of the block in trehalose synthesis. We found that, in addition to the well-known osmotic control, there is a temperature-dependent control of trehalose synthesis such that, in medium containing 0.2 M NaCl, cells grown at 45 degrees C had a fivefold higher trehalose pool size than cells grown at 30 degrees C. Our observations that trehalose accumulation is thermoregulated and that mutations that block trehalose synthesis cause a growth defect at high temperature in media of high osmolality suggested that this disaccharide is crucial for growth at high temperature either for turgor maintenance or for protein stabilization.  相似文献   
7.
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.  相似文献   
8.
Eighteen month old spontaneously hypertensive rats (SHR-rats) showed myocardial dysfunction and autoantibodies directed against the 1-adrenoceptor similarly as known in human dilated cardiomyopathy or Chagas' disease. The agonist-like antibodies were able to activate the 1-adrenoceptor mediated signal transduction cascade in cultured rat cardiomyocytes and induced a long-lasting stimulatory effect resulting in a harmful adrenergic overdrive. The antibodies recognized an epitope of the second extracellular loop of the 1-adrenoceptor identical to that epitope identified in Chagas' disease. In conclusion, our assumption is supported that old SHR-rat are an useful animal model for investigating the role of anti-1-adrenoceptor antibodies in the induction of human cardiomyopathy.  相似文献   
9.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   
10.
Pregnancy-induced diabetes mellitus poses one of the greatest challenges in obstetrical practice. The direct action of diabetes on the myometrial adrenergic functions has not been completely characterized. Accordingly, the present study relates to the impact of experimentally induced diabetes on the presynaptic functions of the rat uterus in relation to gestational age. Experiments were carried out on non-pregnant, early-pregnant (day 7), middle-pregnant (day 14) and late-pregnant (day 21) animals. Diabetes was induced with streptozotocin (60 mg/kg, i.v.) in virgin female or early-pregnant animals (on day 2 for the day 7 experiments and on day 5 for the experiments on the middle and late-pregnant animals). Myometrial samples were utilized for superfusion experiments. After saturation, [3H]noradrenaline perfusate fractions were collected and electric field stimulation was applied to determine the amount of transmitter liberated. Additionally, the total uptake capacity of each sample was assayed. Experimental diabetes decreases the transmitter uptake capacity both in virgin rats and at all stages of pregnancy. In early pregnancy (on day 7), this limitation in uptake is obvious as early as 5 days after the induction of diabetes. In non-pregnant animals, the electrically stimulated transmitter release is inhibited substantially, a similar decrease being observed only at mid-pregnancy (day 14). The present superfusion study proves that experimental diabetes depresses the presynaptic adrenergic functions (both the transmitter uptake and the stimulated release) in the myometrium of the rat. Since the effect of diabetes on the uptake capacity can be detected earlier than for generally accepted markers of peripheral neuropathies, superfusion can be suggested as a sensitive and reliable approach for investigations of hyperglycaemia-related functional deteriorations. We speculate that diabetes-induced functional deterioration of the adrenergic nerves could partially explain the anomalies of the reproductive functions found in diabetic patients if a similar mechanism is operative in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号