首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   6篇
  60篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1989年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1964年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   
2.
Embryonic stem (ES) cell lines represent a population of undifferentiated pluripotent cells capable of multilineage differentiation in vitro. Although very useful for studying developmental processes, human ES cell lines have also been suggested as a potential and unlimited source for cellular transplantation and the treatment of human disease. The proteomic basis of embryonic stemness (pluripotentiality and multilineage differentiation) and the transitions that lead to specific cell lineages however, remain to be defined. As an important first step in defining these processes, we have performed a proteomic analysis of undifferentiated mouse R1 ES cell lines using pH 3-10, 4-7 and 6-11 two-dimensional electrophoresis gels, matrix-assisted laser desorption/ionization and tandem mass spectrometry. Of the 700 gel spots analyzed, 241 distinct protein species were identified corresponding to 218 unique proteins, with a significant proportion functionally related to protein expression.  相似文献   
3.
4.
5.
Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 μg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 μg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (-14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation.  相似文献   
6.

Background  

Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.  相似文献   
7.

Background

Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.

Results

To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.

Conclusion

By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users.  相似文献   
8.
9.
Vacuolar-type H+-translocating ATPases (V-ATPases or V-pumps) are complex proteins containing multiple subunits and are organized into two functional domains: a peripheral catalytic sector V1 and a membranous proton channel V0. The functional coupling of ATP hydrolysis activity to proton transport in V-pumps requires a regulatory component known as subunit H (SFD) as has been shown both in vivo and in vitro (Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) J. Biol. Chem. 268, 18286-18292; Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) J. Biol. Chem. 269, 25809-25815). Ca2+ is thought to uncouple V-pumps because it is found to support ATP hydrolysis but not proton transport, while Mg2+ supports both activities. The direct effect of phospholipids on the coupling of V-ATPases has not been reported, likely due to the fact that phospholipids are constituents of biological membranes. We now report that Ca2+-induced uncoupling of the bovine brain V-ATPase can be reversed by imposition of a favorable membrane potential. Furthermore we report a simple "membrane-free" assay system using the V0 proton channel-specific inhibitor bafilomycin as a probe to detect the coupling of V-ATPase under certain conditions. With this system, we have characterized the functional effect of subunit H, divalent cations, and phospholipids on bovine brain V-ATPase and have found that each of these three factors plays a critical role in the functional coupling of the V-pump.  相似文献   
10.
Membrane vesicles prepared from tetracycline-sensitive cells of Pseudomonas putida took up tetracycline by an active transport system with an apparent Km of 2.5 mM and a Vmax of 50 nmol min-1 mg protein-1. In contrast, resistance determinant RP4-containing P. putida had an active high-affinity efflux system for tetracycline with a Km of 2.0 to 3.54 microM and a Vmax of 0.15 nmol min-1 mg protein-1. Thus, the efflux system of tetracycline-resistant P. putida(RP4) had an average of 1,000-fold greater affinity for tetracycline than the influx system of tetracycline-sensitive cells. From these results, it is clear that a major mechanism of tetracycline resistance in RP4-containing P. putida is an active tetracycline efflux mechanism. There was also evidence for a second tetracycline efflux system with low affinity for tetracycline n P. putida(RP4). This efflux system had a Km of 0.25 mM and a Vmax of 1.45 nmol min-1 protein-1. Whether this low-affinity efflux system was also present in tetracycline-sensitive P. putida could not be discerned from these experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号