首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   14篇
  2003年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   11篇
  1991年   11篇
  1990年   28篇
  1989年   21篇
  1988年   35篇
  1987年   27篇
  1986年   18篇
  1985年   12篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
排序方式: 共有190条查询结果,搜索用时 656 毫秒
1.
2.
Amiloride is a reversible inhibitor of the Na+/H+ antiporter which acts at the external aspect of the transport system. The kinetics of inhibition of the Na+/H+ antiporter with amiloride have been controversial, with the usual finding of simple competitive inhibition, but with other reports of mixed and noncompetitive inhibition of the transporter by amiloride. The present experiments demonstrate that the chloride content of the external transport buffer affects the kinetics of amiloride inhibition. Either simple competitive or mixed inhibition by amiloride was observed in the same vesicle preparations depending on the presence of chloride or gluconate in the buffer. The effect of chloride on the inhibitory effect of amiloride was dependent on the concentration of chloride and amiloride. Similar effects were observed with more potent analogues of amiloride. These findings suggest that the external aspect of the antiporter has a site or sites at which the inhibitory effects of amiloride on the Na+/H+ antiporter can be modified by chloride, even though chloride has only slight effects on the kinetics of the Na+/H+ antiporter in the absence of amiloride.  相似文献   
3.
4.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   
5.
The regulation of cytoplasmic pH (pHi) was examined in neuroblastoma X glioma hybrid cell-line cells (NG108-15 cells) using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein. The pHi of NG108-15 cells suspended in nominally HCO-3-free, Na+-containing buffer could be reduced by the external application of acetate. The recovery of pHi to its resting value was blocked by the removal of extracellular Na+, by the addition of extra-cellular H+, and by the addition of analogs of amiloride selective for inhibition of Na+/H+ exchange. The rate of recovery of pHi from acid load exhibited an ionic selectivity of Na+ greater than Li+ much greater than K+, and no recovery was observed in N-methyl-D-glucamine+. Tetrodotoxin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid had no effect on early pHi recovery. These data suggest that Na+/H+ exchange accounts primarily for the recovery of pHi in NG108-15 cells under our experimental conditions. Na+/H+ exchange in NG108-15 cells was accelerated by alpha 2-adrenergic receptors. Thus, (-)epinephrine, but not (+)epinephrine, elicited an intracellular alkalinization which was blocked by the alpha 2-adrenergic receptor selective antagonist yohimbine but not by the alpha 1-adrenergic receptor antagonist, prazosin, nor the beta-adrenergic antagonist, propranolol. Norepinephrine, clonidine, and the clonidine analog, UK-14304, also caused alkalinization of NG108-15 cells, whereas isoproterenol, a beta-adrenergic receptor agonist, and phenylephrine, a selective alpha 1-adrenergic receptor agonist, did not. Manipulations that blocked Na+/H+ exchange blocked the ability of alpha 2-adrenergic agonists to alkalinize the interior of NG108-15 cells without blocking the ability of these agonists to attenuate cAMP accumulation. These findings provide the first direct evidence of modulation of Na+/H+ exchange activity by a receptor linked to inhibition of adenylate cyclase and offer a possible mechanism whereby alpha 2-adrenergic receptors might influence cellular activity apart from changes in cyclic nucleotide metabolism.  相似文献   
6.
Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na+ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin-dose dependence. These responses precede secretion of the contents of the dense granules (serotonin) and, after 1 minute, of lysosomes (beta-glucuronidase). We have evaluated these parameters in the presence of 2H2O in order to determine if the Na+ influx and H+ efflux are sequential or simultaneous. NMR evidence indicates that 2H2O equilibration in rapid, and virtually complete within the 3 min prestimulation platelet equilibration period. In response to an 0.05 U/ml addition of thrombin, the rate of depolarization is 70-80% slower in 2H2O than in H2O. The time to reach maximal depolarization is 5 to 10 seconds longer in 2H2O, the extent of depolarization 60% inhibited, and the pH change 85% inhibited. The serotonin secretion is unaltered, while the beta-glucuronidase secretion is 130-180% enhanced. Dimethylamiloride inhibits the Na+ influx and the pH change completely. These results suggest that the Na+ and H+ fluxes across the plasma membrane are interdependent but neither simultaneous nor electroneutral. Furthermore, granule secretion, previously shown by us to be independent of the existent Na+ gradient, depends on the cytoplasmic K+ and H+ concentrations.  相似文献   
7.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   
8.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   
9.
Amiloride analogs inhibit a number of transmembrane Na+ transport systems: 1) the epithelium Na+ channel, 2) the Na+/H+ exchange system and 3) the Na+/Ca2+ exchange system. Structure--activity relationships using amiloride derivatives with selected modification of each of the functional groups of the molecule indicate that the 3 Na+ transporting systems have distinct pharmacological profiles. 5-N Disubstituted derivatives of amiloride, such as ethylisopropylamiloride are the most potent inhibitors of the Na+/H+ exchange system. Conversely, amiloride derivatives that are substituted on the guanidino moiety, such as phenamil, are potent inhibitors of the epithelium Na+ channel. It is thus possible, by using selected amiloride derivatives to inhibit selectively one or another of the Na+ transport systems.  相似文献   
10.
The role of monovalent cationic gradients in human polymorphonuclear leukocyte (PMNL) stimulation was investigated by monitoring immune complex-stimulated transmembrane depolarization and superoxide production, events which accompany--and have been used as indicators of --PMNL activation. Abolishing only the Na+ gradient by substitution of choline for extracellular Na+ did not affect the resting membrane potential but reduced the rate of stimulus-induced transmembrane depolarization to 50% of control. In contrast, collapsing both Na+ and K+ gradients by suspension in K+ buffer (high K-PRK) depolarized the cells and reduced the stimulus-induced rate of depolarization to 11% of control. Pretreatment of cells suspended in Na+ buffers with 5-(N,N-dimethyl)amiloride hydrochloride (DMA) or with valinomycin reduced by one-half the rate of immune complex induced membrane depolarization. Conversely, in the absence of either or of both Na+ or K+ gradients, or in the presence of valinomycin, immune complex elicited an enhanced rate of superoxide production. However, PMNL prepared via NH4Cl (NH4Cl-PMNL) instead of H2O (H2O-PMNL) lysis of residual red blood cells exhibited an absolute requirement for an intact Na+ gradient in cell stimulation. The present results thus demonstrate that: 1) both Na+ and K+ gradients participate equally in the membrane depolarization elicited by immune complex; 2) neither a Na+ or a K+ gradient is required for immune complex activation, or for activity of the respiratory burst; and 3) an artifactual requirement for an intact Na+ gradient occurs in neutrophils prepared by the NH4Cl lysis technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号