首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   33篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   21篇
  2012年   16篇
  2011年   13篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1992年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1970年   3篇
  1967年   2篇
  1908年   2篇
  1902年   1篇
  1901年   2篇
  1900年   2篇
  1899年   1篇
  1897年   2篇
  1892年   1篇
  1890年   2篇
  1889年   1篇
  1888年   1篇
  1887年   3篇
  1882年   1篇
排序方式: 共有289条查询结果,搜索用时 187 毫秒
1.
2.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   
3.
4.
Sporicidal properties of some halogens   总被引:4,自引:0,他引:4  
  相似文献   
5.
The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.  相似文献   
6.
Summary Microsomal and soluble fractions of Pleurotus pulmonarius exhibited a reduced carbon monoxide difference spectrum with P450 maxima at 448nm and 450–452nm respectively. Substrate induced Type I spectra were observed on addition of benzo(a)pyrene to both fractions. Benzo(a)pyrene hydroxylation was measured using the aryl hydrocarbon hydroxylase assay and was observed to be P450 dependent as indicated by carbon monoxide inhibition together with the substrate binding characteristics. The activity of the fractions were observed to give Km of 200mM and 660mM and Vmax of 1.25 nmol/min/nmol P450 and 0.57 nmol/min/nmol P450 for the microsomal and cytosolic fractions respectively.  相似文献   
7.
8.
The isolated vascularly perfused rat intestine exhibits an obligatory need for a protein carrier in order to absorb zinc. Therefore this system is ideal for use as a model to identify the plasma carrier during zinc absorption. Affinity chromatography on Blue Sepharose CL-6B was employed to separate the major serum zinc-binding proteins in the portal effluent of the perfused intestine. It was found that 94% of newly absorbed 65Zn was transported in the portal serum-containing perfusate as an albumin-65Zn complex. The identity of albumin as the plasma carrier was confirmed by polyacrylamide-slab-gel electrophoresis. This evidence suggests that albumin is the plasma protein that is involved in removal of zinc from intestinal-mucosal cells and subsequent transport of the metal in portal blood to the liver.  相似文献   
9.
10.
The conductance of carbon dioxide (CO2) from the substomatal cavities to the initial sites of CO2 fixation (gm) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm, (iii) the technical limitation of estimating gm, which cannot be directly measured, and (iv) how gm responds to long‐ and short‐term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two‐resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three‐dimensional (3‐D) reaction‐diffusion models and 3‐D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm. Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号