首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   22篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2002年   1篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1975年   2篇
  1973年   2篇
排序方式: 共有142条查询结果,搜索用时 265 毫秒
1.
The purpose of this study was to evaluate the effect of neurotrophin 3 (NT-3) enhanced nerve regeneration on the reinnervation of a target muscle. Muscle fibers can be classified according to their mechanical properties and myosin heavy chain (MHC) isoform composition. MHC1 containing slow-type and MHC2a or 2b fast-type fibers are normally distributed in a mosaic pattern, their phenotype dictated by motor innervation. After denervation, all fibers switch to fast-type MHC2b expression and also undergo atrophy resulting in loss of muscle mass. After regeneration, discrimination between fast and slow fibers returns, but the distribution and fiber size change according to the level of reinnervation. In this study, rat gastrocnemius muscles (ipsilateral and contralateral to the side of nerve injury) were collected up to 8 mo after nerve repair, with or without local delivery of NT-3. The phenotype changes of MHC1, 2a, and 2b were analyzed by immunohistochemistry, and fiber type proportion, diameter, and grouping were assessed by computerized image analysis. At 8 mo, the local delivery of NT-3 resulted in significant improvement in gastrocnemius muscle weight compared with controls (NT-3 group 47%, controls 39% weight of contralateral normal muscle; P < 0.05). NT-3 delivery resulted in a significant increase in the proportion (NT-3 43.3%, controls 35.7%; P < 0.05) and diameter (NT-3 87.8 μm, controls 70.8 μm; P < 0.05) of fast type 2b fibers after reinnervation. This effect was specific to type 2b fibers; no normalization was seen in other fiber types.This study indicates that NT-3–enhanced axonal regeneration has a beneficial effect on the motor target organ. Also, NT-3 may be specifically affecting a subset of motoneurons that determine type 2b muscle fiber phenotype. As NT-3 was topically applied to cut nerves, our data suggest a discriminating effect of the neurotrophin on neuro–muscular interaction. These results would imply that muscle fibers may be differentially responsive to other neurotrophic factors and indicate the potential clinical role of NT-3 in the prevention of muscle atrophy after nerve injury.There has been much recent interest in the use of growth factors to augment peripheral nerve regeneration. A family of growth factors collectively known as the neurotrophins are now considered critical for the development, maintenance, and regeneration of the nervous system. The neurotrophin family includes NGF, brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3),1 and neurotrophin-4/5 (NT-4/5) (Lewin and Barde, 1996; Lindsay, 1996). Little is known of their effect on regeneration of the peripheral nervous system.NT-3 has been shown to act on a subpopulation of muscle sensory neurons innervating muscle spindles and Golgi tendon organs, and there is also evidence of its effect on a subpopulation of cutaneous afferents (Ernfors et al., 1994; Tessarolo et al., 1994; Airaksinen et al., 1996). NT-3 has shown various effects on motor nerve regeneration, including differentiation of motoneurons from avian neural tube progenitor cells (Averbuch-Heller et al., 1994) and survival of neonatal and adult motoneurons in vitro (Hughes et al., 1993) and of neonatal motoneurons in vivo (Li et al., 1994; Vejsada et al., 1995), although the evidence is sometimes contradictory (Eriksson et al., 1994). In cocultures of adult muscle and embryonic motoneurons, NT-3 enhances the number and length of neurite outgrowths, the density of endplates per muscle fiber, and the amount of muscle innervation (Braun et al., 1996). NT-3 also plays a role in functional maturation of neuromuscular synapses (Lohoff et al., 1993; Wang et al., 1995) and regulates the cholinergic phenotype of developing motoneurons (Wong et al., 1993; Kato and Lindsay, 1994). NT-3 knockout mice show a loss of all muscle spindle afferent innervation and fusimotor neurons to the muscle but lose only few skeletomotor nerve fibers (Kucera et al., 1995a ). About 80% of adult motoneurons express the NT-3–specific trkC receptor (Henderson et al., 1993; Griesbeck et al., 1995), and NT-3 is the predominant neurotrophin expressed in skeletal muscle (Griesbeck et al., 1995). Furthermore, NT-3 is internalized and retrogradely transported from the periphery to motoneuron cell bodies (Di Stefano et al., 1992). Thus, there is experimental and circumstantial evidence to suggest that NT-3 may play a role in adult motoneurons, although in vivo data on the survival effect of NT-3 on adult motoneurons is still lacking. Furthermore, there is no evidence of an NT-3–dependent effect on neuro–muscular interaction.When a skeletal muscle is denervated and subsequently reinnervated, a characteristic sequence of events ensues. The muscle rapidly loses weight as the muscle fibers atrophy (Pellegrino and Franzini, 1963), but after reinnervation, it gradually recovers mass to a variable extent, depending upon the degree of reinnervation (Bertelli and Mira, 1995) and correlating with the maximum force of contraction (Gillespie et al., 1987). The fibers within an individual skeletal muscle do not exist as a homogenous population but can be classified according to their different metabolic and contractile properties (Burke et al., 1971; Peter et al., 1972). Also, they can be identified morphologically according to differential expression of specific myosin heavy chain isoforms. Slow, oxidative type 1 muscle fibers contain myosin heavy chain 1 (MHC 1), fast oxidative glycolytic type 2a fibers contain myosin heavy chain 2a (MHC 2a), while fast glycolytic type 2b fibers contain myosin heavy chain 2b (MHC 2b) (Bar and Pette, 1988). Muscle fiber phenotype is conferred by its innervation, and changes of neuro–muscular interaction lead to alteration of muscle fiber phenotype (Romanul and Van der Meulen, 1966; Fex and Sonneson, 1970; Salmons and Sreter, 1975). The relative proportions of fiber types vary with age, sex, strain, species, and muscle type (Maltin et al., 1989). Generally, there is a high proportion of type 1 fibers in postural muscles (e.g., soleus) and of type 2 fibers in fast muscles (e.g., extensor digitorum longus), while in mixed muscles (e.g., gastrocnemius) there are varying proportions of each type. Muscle fiber type proportion also varies dynamically with physiological and pathological parameters (Jansson et al., 1978; Green et al., 1983; Izumo et al., 1986; Goldspink et al., 1992; Pette and Vrbova, 1992). For example, the distribution of fiber types in normal muscle is dispersed in a “mosaic pattern,” but after denervation and reinnervation of the muscle there is a shift to grouping (Karpati and Engel, 1968). Also, there is a change in the proportions of fiber types, and in the rat the majority of fibers become initially fast with denervation, with subsequent fiber specialization being dictated by patterns of reinnervation (Fields and Ellisman, 1986). This plastic nature of muscle makes it an interesting model to investigate reinnervation changes that may occur after NT-3 administration.We have recently demonstrated that the local delivery of NT-3 to rat sciatic nerve enhances the rate and amount of nerve regeneration, and at 8 mo postoperative, there was a 40% increase in the myelinated fiber count (Sterne et al., 1997). However, enhanced regeneration by itself is not necessarily indicative of a beneficial effect on the target muscles, such as reacquisition of more normal physiological function. Therefore, the aim of this study was to assess whether NT-3–enhanced nerve regeneration resulted in biochemical or morphological changes in a target muscle (gastrocnemius), which would be suggestive of significant improvement of physiological function above that seen after nerve repair without administration of neurotrophin. Immunohistochemistry, in conjunction with computerized quantification and morphometrical analysis, was used to analyze the number, size, and pattern of distribution of the MHC fiber types after denervation and reinnervation of the gastrocnemius muscle.  相似文献   
2.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
3.
Cell envelope associations of Aquaspirillum serpens flagella.   总被引:12,自引:9,他引:3       下载免费PDF全文
Specific regions of the cell envelope associated with the flagellar basal complex of the gram-negative bacterium Aquaspirillum (Spirillum) serpens were identified by studying each of the envelope layers: outer membrane, mucopeptide, and plasma membrane. The outer membrane around the flagella insertion site was differentiated by concentric membrane rings and central perforations surrounded by a closely set collar. The perforations in both the outer membrane and the isolated mucopeptide layer were of a size accomodating the central rod of the basal complex but smaller than either the L or the P disks. The P disk of the complex may lie between the mucopeptide and the outer membrane. Electron microscopy of intact, spheroplasted, or autolyzed preparations did not adequately resolve the location of the inner pair of disks of the basal complex. Freeze-etching, however, revealed differentiation within the plasma membrane that appeared to be related to the basal complex. The convex fracture face showed depressions which are interpreted as impressions of a disk surrounded by a set of evenly spaced macromolecular studs and containing a central "plug" interpreted as the central rod. In thin sections, blebs, which appear to be associated with the flagellar apparatus, were seen on the cytoplasmic side of the plasma membrane. Superimposing the dimensions of the flagellar basal complex and the spacings of the cell envelope layers and using the position of the L disk within the outer membrane for reference, showed that the S disk might be within and the M disk beneath the plasma membrane. A tentative model was developed for comparison with that based on the structure of the Escherichia coli basal complex.  相似文献   
4.
5.
6.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
7.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
8.
This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.  相似文献   
9.
10.
Porin of Haemophilus influenzae type b (341 amino acids; M r 37782) determines the permeability of the outer membrane to low molecular mass compounds. Purified Hib porin was subjected to chemical modification of lysine residues by succinic anhydride. Electrospray ionization mass spectrometry identified up to 12 modifications per porin molecule. Tryptic digestion of modified Hib porin followed by reverse phase chromatography and matrix assisted laser desorption ionization time-of-flight mass spectrometry mapped the succinylation sites. Most modified lysines are positioned in surface-located loops, numbers 1 and 4 to 7. Succinylated porin was reconstituted into planar lipid bilayers, and biophysical properties were analyzed and compared to Hib porin: there was an increased average single channel conductance compared to Hib porin (1.24+/−0.41 vs. 0.85+/−0.40 nanosiemens). The voltage-gating activity of succinylated porin differed considerably from that of Hib porin. The threshold voltage for gating was decreased from 75 to 40 mV. At 80 mV, steady-state conductance for succinylated porin was 50–55% of the instantaneous conductance. Hib porin at 80 mV showed a decrease to 89–91% of the instantaneous current levels. We propose that surface-located lysine residues are determinants of voltage gating for porin of Haemophilus influenzae type b. Received: 11 August 2000/Revised: 8 September 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号