首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   9篇
  2022年   3篇
  2021年   9篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   16篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1981年   2篇
  1979年   2篇
  1969年   1篇
  1964年   1篇
排序方式: 共有178条查询结果,搜索用时 296 毫秒
1.
The RNA-P and DNA-P content of the nucleus and the RNA-P content of the whole cell of the livers of 8- to 20-day chick embryos and of adult fowls have been determined. The DNA-P content of the liver nuclei was slightly higher in the 8- and 10-day embryo than in all the other stages examined. A significant decrease in the RNA content of the cell occurred during embryonic development. The RNA content of the adult cell was the same as that of the 14- to 16-day embryo. The proportion of the cellular RNA contributed by the nucleus also decreased during development. In respect to both nuclear RNA content and distribution of RNA between nucleus and cytoplasm, the adult resembled the 8- to 12-day embryo. Examination of the fine structure of the cell showed that, as development progressed, free ribosomes decreased in number and the rough membranes increased. Slices of 8-, 14-, and 20-day embryonic livers and of adult livers were incubated with 14C-leucine, and the amount of labeled amino acid incorporated into whole tissue protein and into the proteins of the subcellular fractions was measured. Embryonic liver incorporated 14C-leucine 15 to 30 times more rapidly than adult liver. The microsomal protein was always more highly labelled than the protein in any other subcellular fraction; however, in the 8-day embryonic and the adult liver the proportion of total counts found in the nuclear fraction was considerably higher than in the 14- or 20-day embryonic liver. The significance of an apparent correlation between the proportion of the cell's RNA contributed by the nucleus and the proportion of total counts in the nuclear fraction is discussed.  相似文献   
2.
We have used the human hepatoma cell line, Hep G2, to examine the ability of hormones and xenobiotics to modulate the hepatic induction of benzo(a)pyrene hydroxylase and epoxide hydrolase. Hep G2 cells were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal calf serum. 3-Methylcholanthrene, diethylstilbestrol, testosterone propionate, and combinations of 3-meth-ylcholanthrene, and each of the hormones were added directly to the culture media. We subsequently studied the metabolism of benzo(a)pyrene using cell lysates of the Hep G2 cells. Metabolites were quantitated by high-performance liquid chromatography (HPLC) using fluorodetection. Exposure to 3-methyl-cholanthrene alone resulted in an eightfold increase in total benzo(a)pyrene metabolites with a change of the predominant metabolite from the 3-hydroxy-benzo(a)pyrene to the carcinogenic pathway of the benzo(a)pyrene-7,8-diol. Diethylstilbestrol and testosterone propionate resulted in small, but significant, decreases in metabolism of benzo(a)pyrene. When exposed in combination with 3-methyl-cholanthrene, testosterone propionate antagonized and diethylstilbestrol potentiated the metabolism of benzo(a)pyrene. 3-Methylcholanthrene, diethylstilbestrol, and combinations of 3-methylcholanthrene and diethylstilbestrol or testosterone propionate resulted in increased epoxide hydrolase activity as compared to controls. These results, carried out in a human hepatoma cell line, lend support to a concern for potentiated toxicity and carcinogenicity following exposure to complex chemical mixtures.  相似文献   
3.
Background: Homeotic genes controlling the identity of flower organs have been characterized in several plant species. To determine whether cells expressing these genes are specified to follow particular developmental fates, we have studied the pattern of cell lineages in developing flowers of Antirrhinum. Each flower has four whorls of organs, and progenitor cells of these can be marked at particular stages of development using a temperature-sensitive transposon. This allows the cell lineages in the flower to be followed, as well as giving information about rates of cell division.Results We show here that, prior to the emergence of organ primordia, cells in the floral meristem have not been allocated organ identities. After this time, lineage restrictions arise between whorls, correlating with the onset of expression of genes that control organ identity. A further lineage restriction appears slightly later on, between the dorsal and ventral surfaces of the petal. Our results further suggest that the rates of cell division fluctuate during key stages of meristem development, perhaps as a consequence of meristem-identity gene expression.Conclusion The patterns of lineage restriction and organ-identity gene expression in early floral meristems are consistent with some cells being allocated specific identities at about this stage of development. Plant cells cannot move relative to each other, so lineage restrictions in plants may reflect particular orientations and/or rates of growth at boundary regions.  相似文献   
4.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   
5.
6.
The American Diabetes Association issues annually its recommendations for diabetes mellitus screening. Although there is a high proportion of people with undiagnosed diabetes in the general population, it is suspected that many of these screening tests could be needless.An analysis was made of the number of venous blood glucose measurements that did not meet the American Diabetes Association requirements performed in 150 people seen in primary care.On average, an unnecessary venous blood glucose measurement is performed every 15 months. The number is significantly higher in people over 45 years of age, and also in women as compared to men (although with a p value slighty higher than 0.05).  相似文献   
7.
8.
Members of the ZIP (SLC39A) and ZnT (SLC30A) families of transmembrane domain proteins are predicted to transport the essential transition metal zinc across membranes, regulating cellular zinc content and distribution via uptake and efflux at the outer plasma and organellar membranes. Twenty-four ZIP and ZnT proteins are encoded in mammalian genomes, raising questions of whether all actually transport zinc, whether several function together in the same tissues/cell types, and how the activity of these transporters is coordinated. To address these questions, we have taken advantage of the ability to manipulate several genes simultaneously in targeted cell types in Drosophila. Previously we reported zinc toxicity phenotypes caused by combining overexpression of a zinc uptake gene, dZip42C.1, with suppression of a zinc efflux gene, dZnT63C. Here we show that these phenotypes can be used as a sensitized in vivo system to detect subtle alterations in zinc transport activity that would be buffered in healthy cells. Using two adult tissues, the fly eye and midline (thorax/abdomen), we find that when overexpressed, most of the 17 Drosophila Zip and ZnT genes modify the zinc toxicity phenotypes in a manner consistent with their predicted zinc transport activity. In most cases, we can reconcile that activity with the cellular localization of an enhanced green fluorescent protein tagged version of the protein. Additionally, targeted suppression of each gene by RNA interference reveals several of the fly Zip and ZnT genes are required in the eye, indicating that numerous independent zinc transport genes are acting together in a single tissue.  相似文献   
9.
10.
Large-volume sample stacking using the electroosmotic flow (EOF) pump technique has been investigated for the quantification of 3-nitrotyrosine in urine of diabetic rats. The best separation conditions for these highly complex samples were obtained using capillary electrophoresis (CE) in the reversed polarity mode (i.e., injecting at the cathode and detecting at the anode) using cetyltrimethylammonium bromide (CTAB) in the running buffer. The optimum CE separation conditions were achieved using a phosphate buffer prepared with 0.15M phosphoric acid and 0.5 mM CTAB adjusted to pH 6.4 with sodium hydroxide. In such CE conditions, the limit of detection (LOD) was 1.77 microM for 3-nitrotyrosine with normal injection mode, meanwhile with the large-volume sample stacking technique a more than 20-fold improvement was observed (i.e., LOD = 0.08 microM was obtained) without noticeable loss of resolution. This value allowed the detection of 3-nitrotyrosine in urine from diabetic rats. To our knowledge, this work is one of the few applications showing the great possibilities of these stacking procedures to analyse biological samples by CE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号