首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   17篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   10篇
  2010年   2篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   12篇
  2005年   10篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1962年   1篇
  1961年   2篇
  1960年   1篇
  1958年   1篇
  1948年   1篇
排序方式: 共有123条查询结果,搜索用时 62 毫秒
1.
The effects of two herbicides, 2,3,6-trichlorophenylacetic acid, sodium salt, and 2,2-dichloropropionic acid, sodium salt, on nitrite-oxidizing bacteria were studied by the soil perfusion technique. The time of application of 2,3,6-trichlorophenylacetic acid affected its toxicity to the nitrifier. When it was present in the environment as the nitrifier started growth, it was more toxic than if the organisms were allowed to nitrify actively before they were subjected to the herbicide.

The herbicide 2,2-dichloropropionic acid at rates up to 700 ppm had little effect on nitrite oxidation. The toxicity of 2,3,6-trichlorophenylacetic acid for Nitrobacter was reduced by 2,2-dichloropropionic acid irrespective of whether the cells came into contact with the agents before or during active oxidation. The mode of action for this phenomenon has not been determined.

  相似文献   
2.
Glycinebetaine, proline, asparagine, sucrose, glucose, and dimethylsulphoniopropionate(DMSP) were the major organic solutes in Spartina alternifloraleaf blades. To investigate the physiological role(s) of thesesolutes, the effects of salinity, nitrogen, and sulphur treatmentson leaf blade solute levels were examined. Glycinebetaine wasthe major organic solute accumulated in leaf blades grown at500 mol m–3 NaCl, although asparagine and proline alsoaccumulated when the supply of nitrogen was sufficient. Thesesolutes may play a role in osmotic adjustment. In contrast,DMSP levels either did not change or were reduced in responseto the 500 mol m–3 NaCl treatment. Furthermore, elevatednitrogen supply decreased leaf blade DMSP levels, which wasopposite to the response of glycinebetaine, proline, and asparagine.A 1000-fold increase in external sulphate concentration hadno effect on the leaf blade levels of DMSP, glycinebetaine,proline, or asparagine. These findings suggest that the majorphysiological role of DMSP in S. alterniflora leaf blades isnot for osmotic adjustment, even under conditions of nitrogendeficit and excess sulphur. Instead, DMSP which was presentat 45—130 µmol g–1 dry weight, may play arole as a constitutive organic osmoticum. Key words: Spartina alterniflora, dimethylsulphoniopropionate, glycinebetaine, nitrogen, salinity  相似文献   
3.
4.
Aspects of growth and development were evaluated in the fast-developingannual Triticum aestivum L. ‘Chinese Spring’, theslow-developing perennial Lophopyrum elongatum Löve, theiramphiploid, and chromosome addition and substitution lines ofL. elongatum into ‘Chinese Spring’. Relative growthrates (RGR) of shoots of L. elongatum and the amphiploid werelower than those of ‘Chinese Spring’ (34 and 13%respectively) and main stem development was also slower. Therewas no difference in shoot RGR of any of the chromosome additionor substitution lines and that of ‘Chinese Spring’when assessed between Haun stages 2.0 and 5.0. In contrast,several aspects of plant development were observed to differin the chromosome addition and substitution lines. SubstitutingE genome chromosomes (with the exceptions of 3E and 4E) forD genome chromosomes, or adding E genome chromosomes, slowedthe rate of main stem development, at least up to Haun stage5.0. Despite these differences in the rate of main stem development,the appearance of adventitious roots commenced at approximatelyHaun stage 2.0 in all genotypes. However, the numbers of adventitiousroots and tillers at the 5.0 Haun stage differed between someof the lines when compared to ‘Chinese Spring’.Although incorporation of some L. elongatum chromosomes alteredaspects of plant development, all lines showed more similarityto bread wheat than to L. elongatum, reflecting, in part, thegreater genetic contribution made by bread wheat to these lines.Copyright 2001 Annals of Botany Company Adventitious roots, chromosome addition and substitution lines, Haun stage, Lophopyrum elongatum, relative growth rate (RGR), Triticum aestivum(wheat)  相似文献   
5.
Background and Aims Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution.Methods The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures.Key Results Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex.Conclusions Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds.  相似文献   
6.
7.
Eight wild Hordeum species: H. bogdanii, H. intercedens, H. jubatum, H. lechleri, H. marinum, H. murinum, H. patagonicum, and H. secalinum, and cultivated barley (H. vulgare) were grown in nutrient solution containing 0.2 (control), 150, 300, or 450 mol m(-3) NaCl. In saline conditions, the wild Hordeum species (except H. murinum) had better Na+ and Cl- 'exclusion', and maintained higher leaf K+, compared with H. vulgare. For example, at 150 mol m(-3) NaCl, the K+:Na+ in the youngest, fully expanded leaf blades of the wild Hordeum species was, on average, 5.2 compared with 0.8 in H. vulgare. In H. marinum grown in 300 mol m(-3) NaCl, K+ contributed 35% to leaf psi(pi), whereas Na+ and Cl- accounted for only 6% and 10%, respectively. By comparison, in H. vulgare grown at 300 mol m(-3) NaCl, K+ accounted for 19% and Na+ and Cl- made up 21% and 25% of leaf psi(pi), respectively. At 300 mol m(-3) NaCl, glycinebetaine and proline together contributed almost 15% to psi(pi) in the expanding leaf blades of H. marinum, compared with 8% in H. vulgare. Decreased tissue water content under saline conditions made a substantial contribution to declines in leaf psi(pi) in the wild Hordeum species, but not in H. vulgare. A number of the wild Hordeum species were markedly more salt tolerant than H. vulgare. H. marinum and H. intercedens, as examples, had relative growth rates 30% higher than H. vulgare in 450 mol m(-3) NaCl. Hordeum vulgare also suffered up to 6-fold more dead leaf material (as a proportion of shoot dry mass) than the wild Hordeum species. Thus, several salt-tolerant wild Hordeum species were identified, and these showed an exceptional capacity to 'exclude' Na+ and Cl- from their shoots.  相似文献   
8.
Plant growth and physiology under heterogeneous salinity   总被引:3,自引:0,他引:3  

Background

Soil salinity is heterogeneous, and within the root-zone of single plants the salinity of the soil solution can vary widely.

Scope

This review shows that water uptake by roots from the least saline part of the soil is the key factor driving shoot growth; plants with part of the root at low salinity (0–10?mM NaCl) had 3- to 10-fold higher shoot dry mass than plants with roots in uniformly saline (50–800?mM NaCl) media. Plants in heterogeneous salinity had shoot water potentials similar to those of plants growing in uniform low-salt media, and this was likely a result of uptake of low salinity water and reduced stomatal conductance. Under heterogeneous conditions, roots in saline media took up ions, resulting in higher shoot Na+ and Cl- concentrations compared with plants growing in low-salt media.

Conclusions

Results from split-root experiments complement knowledge of plant responses to uniform salinities; the next challenge is to develop new protocols so that this understanding can be extrapolated to more complex soil- and field-based systems. More work is also required to understand the physiological mechanisms underlying changes in stomatal conductance and shoot ion regulation in plants under heterogeneous salinities and how these are linked to the saline parts of the root-zone.  相似文献   
9.
In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O2 production by excised aquatic roots, when underwater, was measured with varying light and CO2 regimes; the apparent maximum capacity ( P max) for underwater net photosynthesis in aquatic roots was 0.45  µ mol O2 m−2 s−1. The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O2, and potentially carbohydrates, in flooded and submerged plants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号