首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   8篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   10篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   7篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1961年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
Methyl 2,3-O-benzylidene-6-deoxy-α-L-mannopyranoside (2) reacted with butyllithium to give a mixture of 1,5-anhydro-3-C-butyl-1,2,6-trideoxy-L-ribo-hex-1-enitol (3) and its L-arabino analogue (4), together with methyl 2,3,6-trideoxy-α-L-erythro-hex-2-enopyranoside (5). In contrast, the 4-O-methyl analogue (8) of 2 was converted by butyllithium into methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexo-pyranosid-3-ulose (9), which was further characterized as its oxime 10. The 4-O-benzyl analogue of 8, obtained as two separate diastereoisomers (6 and 7) differing in configuration at C-2 of the dioxolane ring, gave a complex mixture of products on treatment with butyllithium.  相似文献   
2.
Muscarinic activation of tracheal smooth muscle (TSM) involves a M3AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Gαi/o subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Gαq16, whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Gαq15/16 stimulated the NPR-GC. Coupling of αq16 to M3AChR is supported by MAS decreased [3H]QNB binding, being abolished after M3AChR-4-DAMP-alkylation. Anti-i3M3AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i3M3AChR (M3P) was more potent than MAS increasing GTPγ [35S] and decreasing the [3H]QNB activities. Coupling between NPR-GC and Gαq16 was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Gαq16, also showing an immunoreactive heterotrimeric-G-β -subunit. These data support the existence of a novel transducing cascade, involving Gαq16β γ coupling M3AChR to NPR-GC.  相似文献   
3.

Background

A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency.

Results

A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R 2 ) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography–mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R 2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1.

Conclusions

This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential.
  相似文献   
4.
It is believed that pericentromeric heterochromatin may play a major role in the epigenetic regulation of gene expression. We have previously shown that centromeres in human peripheral blood cells aggregate into distinct "myeloid" and "lymphoid" spatial patterns, suggesting that the three-dimensional organization of centromeric heterochromatin in interphase may be ontogenically determined during hematopoietic differentiation. To investigate this possibility, the spatial patterns of association of different centromeres were analyzed in hematopoietic progenitors and compared with those in early-B and early-T cells, mature B and T lymphocytes, and, additionally, mature granulocytes and monocytes. We show that those patterns change during lymphoid differentiation, with major spatial arrangements taking place at different stages during T and B cell differentiation. Heritable patterns of centromere association are observed, which can occur either at the level of the common lymphoid progenitor, or in early-T or early-B committed cells. A correlation of the observed patterns of centromere association with the gene content of the respective chromosomes further suggests that the variation in the composition of these heterochromatic structures may contribute to the dynamic relocation of genes in different nuclear compartments during cell differentiation, which might have functional implications for cell-stage-specific gene expression.  相似文献   
5.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   
6.
7.
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.  相似文献   
8.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
9.
Plants allocate nutrients to specific leaf cell types; eudicots are thought to predominantly allocate phosphorus (P) to epidermal/bundle sheath cells. However, three Proteaceae species have been shown to preferentially allocate P to mesophyll cells instead. These Proteaceae species are highly adapted to P‐impoverished habitats, with exceptionally high photosynthetic P‐use efficiencies (PPUE). We hypothesized that preferential allocation of P to photosynthetic mesophyll cells is an important trait in species adapted to extremely P‐impoverished habitats, contributing to their high PPUE. We used elemental X‐ray mapping to determine leaf cell‐specific nutrient concentrations for 12 Proteaceae species, from habitats of strongly contrasting soil P concentrations, in Australia, Brazil, and Chile. We found that only species from extremely P‐impoverished habitats preferentially allocated P to photosynthetic mesophyll cells, suggesting it has evolved as an adaptation to their extremely P‐impoverished habitat and that it is not a family‐wide trait. Our results highlight the possible role of soil P in driving the evolution of ecologically relevant nutrient allocation patterns and that these patterns cannot be generalized across families. Furthermore, preferential allocation of P to photosynthetic cells may provide new and exciting strategies to improve PPUE in crop species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号