首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
排序方式: 共有17条查询结果,搜索用时 156 毫秒
1.
Signaling from Ras to Rac and beyond: not just a matter of GEFs   总被引:20,自引:0,他引:20       下载免费PDF全文
Members of a family of intracellular molecular switches, the small GTPases, sense modifications of the extracellular environment and transduce them into a variety of homeostatic signals. Among small GTPases, Ras and the Rho family of proteins hierarchically and/or coordinately regulate signaling pathways leading to phenotypes as important as proliferation, differentiation and apoptosis. Ras and Rho-GTPases are organized in a complex network of functional interactions, whose molecular mechanisms are being elucidated. Starting from the simple concept of linear cascades of events (GTPase-->activator--> GTPase), the work of several laboratories is uncovering an increasingly complex scenario in which upstream regulators of GTPases also function as downstream effectors and influence the precise biological outcome. Furthermore, small GTPases assemble into macromolecular machineries that include upstream activators, downstream effectors, regulators and perhaps even final biochemical targets. We are starting to understand how these macromolecular complexes work and how they are regulated and targeted to their proper subcellular localization. Ultimately, the acquisition of a cogent picture of the various levels of integration and regulation in small GTPase-mediated signaling should define the physiology of early signal transduction events and the pathological implication of its subversion.  相似文献   
2.
Hydrogen production by dark fermentation may suffer of inhibition or instability due to pH deviations from optimality. The co-fermentation of promptly degradable feedstock with alkali-rich materials, such as livestock wastes, may represent a feasible and easy to implement approach to avoid external adjustments of pH.Experiments were designed to investigate the effect of the mixing ratio of fruit-vegetable waste with swine manure with the aim of maximizing biohydrogen production while obtaining process stability through the endogenous alkalinity of manure.Fruit-vegetable/swine manure ratio of 35/65 and HRT of 2 d resulted to give the highest production rate of 3.27 ± 0.51 LH2 L−1 d−1, with a corresponding hydrogen yield of 126 ± 22 mLH2 g−1VS-added and H2 content in the biogas of 42 ± 5%. At these operating conditions the process exhibited also one of the highest measured stability, with daily productions deviating for less than 14% from the average.  相似文献   
3.

Background

Fractalkine/CX3CL1, a surface chemokine, binds to CX3CR1 expressed by different lymphocyte subsets. Since CX3CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX3CR1 expression and function in human naïve, germinal centre and memory B cells isolated from tonsil or peripheral blood.

Methodology/Principal Findings

We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX3CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naïve, germinal centre and memory B cells expressed CX3CR1 but only germinal centre B cells were attracted by soluble CX3CL1 in a transwell assay. CX3CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX3CR1+ germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX3CL1. ELISA assay showed that soluble CX3CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX3CL1 did not attract spleen B cells from wild type mice. OVA immunized CX3CR1/ or CX3CL1/ mice showed significantly decreased specific IgG production compared to wild type mice.

Conclusion/Significance

We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX3CL1 that attracts centrocytes. The functional implications of these results warrant further investigation.  相似文献   
4.
Genetic and biochemical evidence demonstrated that Eps8 is involved in the routing of signals from Ras to Rac. This is achieved through the formation of a tricomplex consisting of Eps8-E3b1-Sos-1, which is endowed with Rac guanine nucleotide exchange activity. The catalytic subunit of this complex is represented by Sos-1, a bifunctional molecule capable of catalyzing guanine nucleotide exchange on Ras and Rac. The mechanism by which Sos-1 activity is specifically directed toward Rac remains to be established. Here, by performing a structure-function analysis we show that the Eps8 output function resides in an effector region located within its COOH terminus. This effector region, when separated from the holoprotein, activates Rac and acts as a potent inducer of actin polymerization. In addition, it binds to Sos-1 and is able to induce Rac-specific, Sos-1-dependent guanine nucleotide exchange activity. Finally, the Eps8 effector region mediates a direct interaction of Eps8 with F-actin, dictating Eps8 cellular localization. We propose a model whereby the engagement of Eps8 in a tricomplex with E3b1 and Sos-1 facilitates the interaction of Eps8 with Sos-1 and the consequent activation of an Sos-1 Rac-specific catalytic ability. In this complex, determinants of Eps8 are responsible for the proper localization of the Rac-activating machine to sites of actin remodeling.  相似文献   
5.
Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38 B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli.  相似文献   
6.
7.
Cdc7 is an essential kinase that promotes DNA replication by activating origins of replication. Here, we characterized the potent Cdc7 inhibitor PHA-767491 (1) in biochemical and cell-based assays, and we tested its antitumor activity in rodents. We found that the compound blocks DNA synthesis and affects the phosphorylation of the replicative DNA helicase at Cdc7-dependent phosphorylation sites. Unlike current DNA synthesis inhibitors, PHA-767491 prevents the activation of replication origins but does not impede replication fork progression, and it does not trigger a sustained DNA damage response. Treatment with PHA-767491 results in apoptotic cell death in multiple cancer cell types and tumor growth inhibition in preclinical cancer models. To our knowledge, PHA-767491 is the first molecule that directly affects the mechanisms controlling initiation as opposed to elongation in DNA replication, and its activities suggest that Cdc7 kinase inhibition could be a new strategy for the development of anticancer therapeutics.  相似文献   
8.
Minichromosome maintenance 2-7 proteins play a pivotal role in replication of the genome in eukaryotic organisms. Upon entry into S-phase several subunits of the MCM hexameric complex are phosphorylated. It is thought that phosphorylation activates the intrinsic MCM DNA helicase activity, thus allowing formation of active replication forks. Cdc7, Cdk2, and ataxia telangiectasia and Rad3-related kinases regulate S-phase entry and S-phase progression and are known to phosphorylate the Mcm2 subunit. In this work, by in vitro kinase reactions and mass spectrometry analysis of the products, we have mapped phosphorylation sites in the N terminus of Mcm2 by Cdc7, Cdk2, Cdk1, and CK2. We found that Cdc7 phosphorylates Mcm2 in at least three different sites, one of which corresponds to a site also reported to be phosphorylated by ataxia telangiectasia and Rad3-related. Three serine/proline sites were identified for Cdk2 and Cdk1, and a unique site was phosphorylated by CK2. We raised specific anti-phosphopeptide antibodies and found that all the sites identified in vitro are also phosphorylated in cells. Importantly, although all the Cdc7-dependent Mcm2 phosphosites fluctuate during the cell cycle with kinetics similar to Cdc7 kinase activity and Cdc7 protein levels, phosphorylation of Mcm2 in the putative cyclin-dependent kinase (Cdk) consensus sites is constant during the cell cycle. Furthermore, our analysis indicates that the majority of the Mcm2 isoforms phosphorylated by Cdc7 are not stably associated with chromatin. This study forms the basis for understanding how MCM functions are regulated by multiple kinases within the cell cycle and in response to external perturbations.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号