首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Radiation inactivation is a method to determine the apparent target size of molecules. In this report we examined whether radiation inactivation of various enzymes and brain receptors is influenced by the preparation of samples preceding irradiation. The apparent target sizes of endogenous acetylcholinesterase and pyruvate kinase from rat brain and from rabbit muscle and benzodiazepine receptor from rat brain were investigated in some detail. In addition the target sizes of alcohol dehydrogenase (from yeast and horse liver), beta-galactosidase (from Escherichia coli), lactate dehydrogenase (endogenous from rat brain), and 5-HT2 receptors, acetylcholine muscarine receptors, and [35S] butyl bicyclophosphorothionate tertiary binding sites from rat brain were determined. The results show that apparent target sizes are highly influenced by the procedure applied for sample preparation before irradiation. The data indicate that irradiation of frozen whole tissue as opposed to lyophilized tissue or frozen tissue homogenates will estimate the smallest and most relevant functional target size of a receptor or an enzyme.  相似文献   
2.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   
3.
In experiments with audiogenic seizures in DBA/2 mice, we observed that several socalled benzodiazepine receptor antagonists exhibited either anticonvulsive (Ro 15-1788, PrCC) or proconvulsive (FG 7142, beta-CCE, CGS 8216) effects at high receptor occupancy (17-85%), as compared to benzodiazepines and DMCM which had anticonvulsive and proconvulsive actions, respectively, at very low receptor occupancy (less than 10%). Sensitive distinction between benzodiazepine receptor ligands with low anticonvulsive efficacy (partial agonists) and ligands with low proconvulsive, and maybe anxiogenic, efficacy (partial inverse agonists) can thus be obtained in sound seizure susceptible mice.  相似文献   
4.
Chronic administration of lithium led to a decreased number of benzodiazepine receptors (ca. 20%) in frontal cortex of rat brain, whereas no change was observed in the binding characteristics in the remaining part of the cortex and in the hippocampus and the cerebellum. Long-term lithium treatment did not change the binding of [3H]lysergic acid diethylamide and [3H]quinuclidinyl benzilate to membranes of various brain regions in the rat. We concluded that the effect of lithium on the benzodiazepine receptor is brain region specific and cannot be explained as a consequence of a reduced gamma-aminobutyric acid-ergic stimulation of benzodiazepine receptor, as the change in receptor binding was due to a change in the number of receptors rather than in the affinity constant.  相似文献   
5.
We present the first published procedure for the measurement of endogenous conjugated 3,4-dihydroxyphenylglycol (DOPEG) in the rat brain. Conjugated DOPEG is estimated from brain extracts after enzymic hydrolysis, isolation of hydrolysed DOPEG on alumina, methylation of DOPEG to 3-methoxy-4-hydroxyphenylglycol (MOPEG) and gas chromatographic quantification of MOPEG. The level of conjugated DOPEG in the CNS of rats (65.7 +/- 0.7 ng/g whole brain tissue corrected for recovery) almost equals the level of conjugated MOPEG. The sensitivity of the method is about 6 ng/g brain tissue. After inhibition of monoamine oxidase with clorgyline (30 mg/kg) conjugated DOPEG and MOPEG both disappeared from the brain with a half-life of about 1 h. Turnover calculations indicate that conjugated DOPEG and MOPEG are the two major noradrenaline end-metabolites in the rat brain. The method of estimating conjugated DOPEG also allows the measurement of noradrenaline, dopamine and total MOPEG in an extract from one half of a rat brain.  相似文献   
6.
The in vivo binding of 3H-Tiagabine to the central GABA uptake carrier in mouse brain was characterized. 3H-Tiagabine in vivo bound to a single class of binding sites with a Kd = 72.5 nM and a Bmax = 640 pmol/g tissue. 3H-Tiagabine binding in vivo was regionally distributed within the CNS, and showed a good correlation with 3H-Tiagabine binding in vitro. Pharmacological characterization of 3H-Tiagabine binding in vivo revealed a binding site exhibiting specificity for GABA uptake inhibitors. Experiments examining the in vivo receptor occupancy of the GABA uptake carrier for a series of GABA uptake inhibitors revealed that 20-30% of the GABA uptake sites were occupied at the ED50 for inhibiting DMCM-induced clonic convulsions, while a 50-62% receptor occupancy in vivo was needed to inhibit rotarod performance. These data suggest that 3H-Tiagabine in vivo binding may be a useful method for assessing GABA uptake inhibitor penetration into the CNS, and may be a useful tool for studying the physiological regulation of the GABA uptake carrier.  相似文献   
7.
Abstract: Ethyl β-carboline-β-carboxylate (β-CCE) is a mixed-type inhibitor of [3H]flunitrazepam ([3H]FNM) binding to benzodiazepine receptors in noncerebellar regions of rat brain. These findings may represent the presence of either receptor multiplicity or negative cooperativity among benzodiazepine receptors. [3H]Propyl β-carboline-3-carboxylate ([3H]PrCC) has previously been shown to bind specifically to benzodiazepine receptors of rat cerebellum. In the present study we found no indication of the presence of true negative cooperativity among benzodiazepine receptors when [3H]PrCC was used as radioligand. However, we observed that [3H]PrCC labelled only 57% of [3H]FNM binding sites in rat hippocampus (Bmax values) and 71% in rat cerebral cortex, whereas the number of receptors labelled by both ligands was equal in the cerebellum. Hofstee analyses of the shallow inhibition curves seen in hippocampus and cerebral cortex when [3H]FNM binding was inhibited by β-CCE indicate that β-CCE and some other β-carboline-3-carboxylate derivatives interact preferentially with a subclass of receptors, and that the percentage of this subclass is equivalent to the number of receptors labelled by [3H]PrCC. We conclude that [3H]PrCC at low concentration (0.3–0.4 × 10-9 M) labels a subclass of benzodiazepine receptors, BZ1, while another class, BZ2 receptors, are not labelled by [3H]PrCC when filtration assays are used. By parallel determinations of the proportion between [3H]FNM and [3H]PrCC binding we calculated the percentage of BZ1 receptors in several regions of rat, guinea pig and calf brain and in mouse forebrain. The values ranged from approximately 50% in hippocampus to 90% in the guinea pig pons.  相似文献   
8.
Abstract— A new combined ion-exchange and thin-layer-chromatographic procedure is described which separates and measures quantitatively, after intraventricular injection of [3H]dopamine (DA), the rat brain content of labelled noradrenaline (NA) and the following labelled noradrenaline metabolites: free 3-methoxy-4-hydroxyphenylethyleneglycol (MOPEG), conjugated MOPEG, free plus conjugated dihydroxyphenylethyleneglycol (DOPEG), vanillic mandelic acid (VMA) and normetanephrine (NM). Labelled dopamine and its metabolites were also measured. The time-course study performed from 5 min to 24 h after [3H]DA showed that MOPEG and DOPEG, mainly as conjugates, are major NA metabolites whereas VMA is a very insignificant NA metabolite in the rat brain. A very rapid initial increase of [3H]NM, free MOPEG and conjugated MOPEG was found during the time interval where the [3H]NA biosynthesis is very high (0–15 min). This combined with the finding that these metabolites stabilize at lower levels during the [3H]NA ‘storage phase’ (9–24 h) provides a strong indication that newly synthesized NA preferentially is metabolized. Our measurements of endogenous NA, free MOPEG and conjugated MOPEG provide additional support. The injections of various decreasing doses of [3H]DA (3·08–0·0010 μg) showed that the proportions of total [3H]MOPEG and total [3H]DOPEG to [3H]NA were constant after all [3H]DA doses investigated. This finding indicates that the [3H]NA synthesized in situ behaves as a tracer, even after injections of non-tracer doses of [3H]DA. The results seem thus to indicate that the present technique provides a powerful tool for the investigations on central noradrenaline metabolism.  相似文献   
9.
Rats (N = 8) were trained to discriminate the stimulus properties of the potent benzodiazepine (BZ) receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from saline in a two-lever operant task. The initial training dose of DMCM was 0.4 mg/kg at which the discrimination developed slowly; increasing the dose to 0.8 mg/kg resulted in rapid acquisition. However, since convulsions eventually developed during further training (sensitization), the training dose was finally individualized below the convulsive threshold (0.4-0.7 mg/kg). The DMCM cue was mimicked by FG 7142 (10 mg/kg), a non-convulsant anxiogenic beta-carboline, by pentylenetrazol (20-30 mg/kg), and by the GABA antagonist bicuculline (2 mg/kg). The DMCM cue was not, or marginally, blocked by diazepam (2.5 mg/kg) or pentobarbital (10-15 mg/kg). Furthermore, the BZ receptor antagonists CGS 8216 (2.5 mg/kg), ZK 93426 (20 mg/kg), and Ro 15-1788 (20-80 mg/kg) also did not, or only marginally, block the DMCM cue. However, the receptor antagonists (alone) substituted for DMCM although Ro 15-1788 was less effective. The partial BZ receptor agonist ZK 91296 (25 mg/kg), which is structurally similar to DMCM, blocked completely the DMCM stimulus effect. THIP (4 mg/kg) did not block the DMCM cue. To explain these results, we suggest that the repeated DMCM treatment, necessary for maintaining the discrimination, shifts the balancing point ("set-point") for positive (i.e., BZ-like) agonist efficacy versus inverse agonist efficacy, towards inverse action. This hypothesis was supported by the finding of an enhanced ability of GABA to reduce 3H-DMCM binding to cortical neuronal membranes of animals treated chronically with DMCM in a regimen similar to that used to maintain the DMCM discrimination. Furthermore, this treatment did not affect baseline 3H-DMCM binding, baseline or GABA stimulated 3H-diazepam binding, or 35S-TBPS binding (to chloride channels).  相似文献   
10.
Five and 11 days after withdrawal from 8 weeks of treatment with 90 mg/kg/day of diazepam p.o. or 60 mg/kg/day of lorazepam p.o. there were no consistent changes in the number of benzodiazepine receptors or apparent affinity in vitro for 3H-diazepam at 0°C in rat forebrain membranes. Daily exposure of rats from 10 days before birth until 7 days after birth was also without gross effects on the benzodiazepine receptor. Abstinence and tolerance to benzodiazepines were thus not attributable to changes in brain benzodiazepine receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号