首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7864篇
  免费   745篇
  国内免费   613篇
  2024年   15篇
  2023年   91篇
  2022年   118篇
  2021年   352篇
  2020年   246篇
  2019年   290篇
  2018年   250篇
  2017年   194篇
  2016年   289篇
  2015年   495篇
  2014年   534篇
  2013年   525篇
  2012年   695篇
  2011年   637篇
  2010年   453篇
  2009年   369篇
  2008年   422篇
  2007年   446篇
  2006年   402篇
  2005年   354篇
  2004年   324篇
  2003年   288篇
  2002年   265篇
  2001年   128篇
  2000年   105篇
  1999年   84篇
  1998年   73篇
  1997年   71篇
  1996年   66篇
  1995年   67篇
  1994年   60篇
  1993年   53篇
  1992年   51篇
  1991年   29篇
  1990年   40篇
  1989年   44篇
  1988年   32篇
  1987年   24篇
  1986年   30篇
  1985年   27篇
  1984年   23篇
  1983年   23篇
  1982年   16篇
  1981年   13篇
  1980年   15篇
  1979年   17篇
  1977年   10篇
  1976年   10篇
  1975年   9篇
  1971年   8篇
排序方式: 共有9222条查询结果,搜索用时 18 毫秒
1.
Evidence that the intestinal microbiota is intrinsically linked with overall health, including cancer risk, is emerging. Moreover, its composition is not fixed but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics) and indigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation, namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex complexion deserves greater attention. Overall, a dynamic interrelationship exists between the intestinal microbiota and colon cancer risk, which can be modified by dietary components and eating behaviors.  相似文献   
2.
Many studies have examined the association between the FABP2 (rs1799883) Ala54Thr gene polymorphism and type 2 diabetes mellitus risk (T2DM) in various populations, but their results have been inconsistent. To assess this relationship more precisely, A HuGE review and meta‐analysis were performed. The PubMed and CNKI database was searched for case‐control studies published up to April 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. Ultimately, 13 studies, comprising 2020 T2DM cases and 2910 controls were included. Overall, for the Thr carriers (Ala/Thr and Thr/Thr) versus the wild‐type homozygotes (Ala/Ala), the pooled OR was 1.18 (95% CI = 1.04–1.34, P = 0.062 for heterogeneity), for Thr/Thr versus Ala/Ala the pooled OR was 1.17 (95% CI = 1.05–1.41 P = 0.087 for heterogeneity). In the stratified analysis by ethnicity, the significantly risks were found among Asians but not Caucasians. This meta‐analysis suggests that the FABP2 (rs1799883) Ala54Thr polymorphisms are associated with increased susceptibility to T2DM risk among Asians but not Caucasians.  相似文献   
3.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
4.
  1. As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method.
  2. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.
  3. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.
  4. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys.
  相似文献   
5.
6.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
7.
8.
9.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
10.
The genome sequence analysis of a clinical Vibrio cholerae VC35 strain from an outbreak case in Malaysia indicates multiple genes involved in host adaptation and a novel Na+-driven multidrug efflux pump-coding gene in the genome of Vibrio cholerae with the highest similarity to VMA_001754 of Vibrio mimicus VMA223.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号