首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   9篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
The butyrophenone neuroleptics spiroperidol, benperidol, and haloperidol were radiolabeled with fluorine-18 and studied in baboon brain using positron emission transaxial tomography (PETT). Pretreatment of the baboon with a high pharmacological dose of (+)-butaclamol reduced the specifically bound component of radioactivity distribution in the striatum to approximately the radioactivity distribution found in the cerebellum. Comparative studies of brain distribution kinetics over a 4-h period indicated that either [18F]spiroperidol or [18F]benperidol may be suitable for specific labeling of neuroleptic receptors. In an 8-h study with [18F]spiroperidol, striatal radioactivity did not decline, suggesting that spiroperidol either has a very slow dissociation rate or that it binds irreversibly to these receptors in vivo. [18F]Haloperidol may not be suitable for in vivo PETT studies, because of a relatively high component of nonspecific distribution and a faster dissociation from the receptor. Analysis of 18F in plasma after injection of [18F]spiroperidol indicated rapid metabolism to polar and acidic metabolites, with only 40% of the total radioactivity being present as unchanged drug after 30 min. Analysis of the metabolic stability of the radioactively labeled compound in rat striatum indicated that greater than 95% of [18F]spiroperidol remains unchanged after 4 h.  相似文献   
2.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   
3.
4.
5.
6.
7.
8.
9.
Recombination between RNA sequences plays a role in the fast evolution of a few viruses. There has been no report on hepatitis D virus (HDV) recombination. In this study, we analyzed genetic recombination of HDV and its possible impact on evolution and clinical course. The aligned HDV sequences allowed us to construct a phylogenetic tree which supported the notion of distinct lineages of HDV. The tree was also used in the analysis of recombination using partial likelihoods assessed through optimization. Nine segments of the HDV genome with significant levels of genetic recombination were detected. Five segments were in the hypervariable region, and four were in the delta-antigen- coding region. None could be found in the well-conserved autocleavage region that is essential for replication. Recombination occurred both between and within types. The results of this study indicated that the remarkable variation in HDV genomic sequences, particularly in the hypervariable region, among different genotypes may at least partly result from multiple episodes of genetic recombination during evolution. Genetic recombination may play a significant role in increasing genetic diversity. Importantly, a genetic recombination (nt 1082-1093) occurred in one of the immunogenic domains of hepatitis delta virus antigen recognized by human and woodchuck antibodies (amino acids 174-195). Genetic recombination also occurred at another segment between nt 1517 and 1535, which was close to one of the predicted T-cell epitopes (amino acids 26-41). In longitudinal analysis of HDV genomes at different time points during chronic infection, novel dominant HDV strains with amino acid changes at these epitopes usually emerged after severe hepatitis attacks. In the comparison of HDV clones during or shortly after flare-up of liver disease, Ka/Ks ratios of > 1 were frequently found, suggesting Darwinian positive selection. Therefore, recombination in these two segments may play an important role for HDV in the evasion of immunity.  相似文献   
10.
Fibrosis is the important pathway for end-stage renal failure. Glucose has been demonstrated to be the most important fibrogenesis-inducing agent according to previous studies. Despite diosgenin has been demonstrated to be anti-inflammatory, the possible role in fibrosis regulation of diosgenin remain to be investigated. In this study, renal proximal tubular epithelial cells (designated as HK-2) were treated with high concentration of glucose (HG, 27.5 mM) to determine whether diosgenin (0.1, 1 and 10 μM) has the effects to regulate renal cellular fibrosis. We found that 10 μM of diosgenin exert optimal inhibitory effects on high glucose-induced fibronectin expression in HK-2 cells. In addition, diosgenin markedly inhibited HG-induced increase in α-smooth muscle actin (α-SMA) and HG-induced decrease in E-cadherin. In addition, diosgenin antagonizes high glucose-induced epithelial-to-mesenchymal transition (EMT) signals partly by enhancing the catabolism of Snail in renal cells. Collectively, these data suggest that diosgenin has the potential to inhibit high glucose-induced renal tubular fibrosis possibly through EMT pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号