首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   21篇
  国内免费   1篇
  2021年   1篇
  2018年   1篇
  2017年   7篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   2篇
  2010年   9篇
  2009年   10篇
  2008年   5篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
1.
Summary Transposable element Activator (Ac) induced wild-type stable revertants, derived from McClintock's Dissociation (Ds) insertion shrunken (sh) mutant sh-m5933, have been examined for sucrose synthases, SS1 and SS2, encoded by the revertant (Sh) locus and the non-allelic gene Sus (previously designated as Ss2), respectively. A structurally normal Sh locus has been previously described in these revertants. Immuno-blot (Western) and Southern hybridization analyses reported here identify one of the nine alleles, Sh-r5, as unique for several features. It showed altered tissue specificity, as the SS1 protein encoded by the Sh-r5 allele was readily detectable in the immature embryo which is otherwise characterized by the Sus expression only. The level of Sh-r5 expression at the protein and enzyme level was marked by endosperm specific SS1 abundance and a significant down-regulation in the embryo similar to the standard Sh and Sus loci in endosperm and embryo, respectively. We infer that tissue specific levels of gene expression among maize Ss genes is significantly determined by trans-regulatory factors present in these two tissues. The Sh-r5 strain also exhibited a complete loss of the Sus expression in all tissues tested in the plant. Lack of any detectable phenotypic abnormality in the Sh-r5 strain due to the loss of SS2 protein indicated that either the SS2 protein is nonessential or that the two SS isozymes are functionally compensatory. Genomic filter hybridizations with the Sus cDNA clone indicated that the Sus locus in the Sh-r5 strain was not deleted and was, in fact, unique among these revertants. Together, these data provide an unusual insight into the regulation and function of the two SS isozymes in the maize plant.  相似文献   
2.
Plasma membrane fractions were isolated from maize (Zea mays L.) endosperms and etiolated kernels to investigate the possible membrane location of the sucrose synthase (SS) protein. Endosperms from seedlings at both 12 and 21 days after pollination (DAP), representing early and mid-developmental stages, were used, in addition to etiolated leaf and elongation zones from seedlings. Plasma membrane fractions were isolated from this material using differential centrifugation and aqueous two-phase partitioning. The plasma membrane-enriched fraction obtained was then analyzed for the presence of sucrose synthase using protein blots and activity measurements. Both isozymes SS1 and SS2, encoded by the lociSh1 andSus1, respectively, were detected in the plasma membrane-enriched fraction using polyclonal and monoclonal antisera to SS1 and SS2 isozymes. In addition, measurements of sucrose synthase activity in plasma membrane fractions of endosperm revealed high levels of specific activity. The sucrose synthase enzyme is tightly associated with the membrane, as shown by Triton X-100 treatment of the plasma membrane-enriched fraction. It is noteworthy that the gene products of bothSh1 andSus1 were detectable as both soluble and plasma membrane-associated forms.  相似文献   
3.
4.
Experiments were conducted to determine whether sucrose synthase (SuSy) was phosphorylated in the elongation zone of maize (Zea mays L.) leaves. The approximately 90-kD subunit of SuSy was 32P-labeled on seryl residue(s) when excised shoots were fed [32P]orthophosphate. Both isoforms of SuSy (the SS1 and SS2 proteins) were phosphorylated in vivo, and tryptic peptide-mapping analysis suggested a single, similar phosphorylation site in both proteins. A combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and automated Edman sequencing analysis unequivocally identified the phosphorylation site in the maize SS2 protein as serine-15. This site was phosphorylated in vitro by endogenous protein kinase(s) in a strictly Ca(2+)-dependent manner. A synthetic peptide, based on the phosphorylation site sequence, was used to identify and partially purify an endogenous Ca(2+)-dependent protein kinase(s) from the maize leaf elongation zone and expanding spinach leaves. Phosphorylation of SuSy in vitro selectively activates the cleavage reaction by increasing the apparent affinity of the enzyme for sucrose and UDP, suggesting that phosphorylation may be of regulatory significance. Conservation of the phosphorylation site, and the sequences surrounding it, among plant species suggests that phosphorylation of SuSy may be widespread, if not universal, in plants.  相似文献   
5.
Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction.  相似文献   
6.
Genetic evidence is presented to show that the developmental stability of maternal cells in the pedicel at the base of maize seeds is determined by the genotype of the developing endosperm. An early degeneration and withdrawal of maternal cells from the endosperm of homozygous miniature (mn mn) seed mutants were arrested if mn plants were pollinated by the wild-type Mn pollen. Similarly, the stability of the wild-type, Mn mn, maternal cells was also dependent on whether or not these cells were associated with the normal (Mn) or the mutant (mn) endosperm on the same ear. Biochemical and cellular analyses indicated that developing mn kernels have extremely low (<0.5% of the wild type) to undetectable levels of both soluble and wall-bound invertase activities. Extracts from endosperm with a single copy of the Mn gene showed a significant increase in both forms of invertases, and we suggest it is the causal basis of the wild-type seed phenotype. Collectively, these data provide evidence that invertase-mediated maintenance of a physiological gradient of photosynthate between pedicel and endosperm constitutes the rate-limiting step in structural stability of maternal cells as well as normal development of endosperm and seed.  相似文献   
7.
Genetic control of sucrose synthetase in maize endosperm   总被引:5,自引:0,他引:5  
Summary Sucrose synthetase activity in endosperm extracts of seven shrunken(sh) mutants of spontaneous origin and three similar mutants due to the association of the controlling element Ds with the Sh locus is examined. A residual level of 3 to 5% as compared to the normal (Sh) endosperm is seen in all the mutants. The residual activity is similar to that of the Sh locus encoded endosperm sucrose synthetase by several criteria including an identical size of polypeptides and a similarity in antigenic properties. These two enzymes are, however, distinguishable by a slight difference in electrophoretic mobility in native gels and a difference in the relative abundance of enzyme molecules. The latter property is a reflection of a marked difference seen in the developmental profile of enzyme activity in the two genotypes. The earlier hypothesis (Chourey and Nelson 1976) that these two sucrose synthetases are encoded by two separate genes is strengthened by: (a) the presence of the residual enzyme in a sh deletion mutant and (b) an electrophoretic demonstration of two proteins, corresponding to the major and minor sucrose synthetase proteins, in the wild type (Sh) genotype. The two sucrose synthetase genes seem to provide a model system in plants for studying the molecular basis of temporal specificity of genes.Cooperative Investigation, United States Department of Agriculture and Institute of Food and Agricultural Sciences, University of Florida, Florida Agricultural Experiment Station Journal Series No. 3288. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   
8.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30?kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
9.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
10.
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号