首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7457篇
  免费   558篇
  2021年   92篇
  2019年   69篇
  2018年   86篇
  2017年   85篇
  2016年   124篇
  2015年   202篇
  2014年   240篇
  2013年   387篇
  2012年   336篇
  2011年   365篇
  2010年   262篇
  2009年   259篇
  2008年   339篇
  2007年   361篇
  2006年   331篇
  2005年   332篇
  2004年   364篇
  2003年   334篇
  2002年   280篇
  2001年   300篇
  2000年   294篇
  1999年   262篇
  1998年   100篇
  1997年   72篇
  1996年   64篇
  1995年   64篇
  1994年   51篇
  1993年   59篇
  1992年   134篇
  1991年   142篇
  1990年   135篇
  1989年   121篇
  1988年   113篇
  1987年   126篇
  1986年   104篇
  1985年   89篇
  1984年   69篇
  1983年   43篇
  1982年   48篇
  1981年   48篇
  1979年   55篇
  1978年   51篇
  1977年   56篇
  1974年   52篇
  1973年   57篇
  1972年   38篇
  1971年   38篇
  1970年   39篇
  1969年   48篇
  1968年   47篇
排序方式: 共有8015条查询结果,搜索用时 250 毫秒
1.
2.
5,6-Dihydroxyindole (5,6DHI) and 5,6-dihydroxyindole-2-carboxylic acid (5,6DHI2C) are ultimate precursors of the black melanin, eumelanin. These indolic metabolites and their O-methyl derivatives are excreted in urine of melanoma patients at high levels and of healthy persons at low levels. We describe here a simplified procedure for preparing milligram to subgram quantities of 5,6DHI and 5,6DHI2C and their O-methyl derivatives. Dopachrome generated in situ by ferricyanide oxidation of dopa at pH 6.5 underwent spontaneous decarboxylation to give 5,6DHI in 40% isolation yield, while treatment of dopachrome with alkali at pH 13 afforded 5,6DHI2C in 38% isolation yield. Two isomeric O-methyl derivatives of 5,6DHI were prepared by treatment with diazomethane, while those of 5,6DHI2C were prepared by treatment with diazomethane followed by alkaline hydrolysis of the methyl esters. 5,6DHI and 6-hydroxy-5-methoxyindole were also obtained by heating the corresponding carboxylic acids in decalin. 5-Hydroxy-6-methoxyindole and 6-hydroxy-5-methoxyindole-2-carboxylic acid could also be prepared by debenzylation of the commercially available O-benzyl derivatives.  相似文献   
3.
4.
The authors established the amino acid substitutions determining G3m(s) and G3m(t) specificities, which characterize Mongoloid populations, by sequence analysis of the Fc region of a myeloma protein (Jir). By comparing the amino acid sequences of the IgG3 (Jir) and the other IgG subclasses analyzed to date, it was found that G3m(s) was an isoallotype specified by an amino acid substitution at position 435; i.e., whereas the subclasses IgG1, IgG2, and IgG4 had histidine in common, G3m(s-) had arginine in this position. This was also confirmed by the observation that the Fc fragment in question bound to protein A. It was also established that the amino acid at position 379 of G3m(t-) IgG3 and the other subclasses was valine, whereas methionine in this position was specific for G3m(t+). In addition, the amino acids at position 339 of G3m(u-) IgG3 Jir was threonine, and at position 296 of G3m(g-) IgG3 Jir was tyrosine. These findings are not in accord with the hitherto postulated relations of alanine and phenylalanine to G3m(u-) and G3m(g-), respectively. Finally, this study showed that a large number of substitutions occurred at positions 384 through 389, which suggests that many specificities of the G3m(b) group occur on IgG3 proteins.  相似文献   
5.
6.
The procedure for immunochemical adsorption of vesicles with specific antigen on their outer surfaces was improved. When microsomal vesicles were mixed with Staphylococcus aureus cells coated with the antibody against NADPH-cytochrome c reductase, more than 90% of the enzyme activity was adsorbed on the cell, whereas, only about 10% of the activity was adsorbed on cells coated with the same amount of anti-ovalbumin antibody. NADH-cytochrome c reductase and aldehyde dehydrogenase activities were adsorbed on the cell to the same extent as was NADPH-cytochrome c reductase activity. Under this condition, there was no adsorption of the activities of the marker enzymes of lysosomes and Golgi apparatus, whereas large amounts of the activities of the plasma membrane enzymes were adsorbed. The specific activity of NADPH-cytochrome c reductase in the adsorbed vesicles from the microsomal fractions increased considerably. In contrast, marker enzymes of the Golgi or of the plasma membranes could be enriched in unadsorbed vesicles from the Golgi fractions.  相似文献   
7.
Oxidation of thymine with O2 was promoted by copper(I) ion generated from reaction of L-ascorbic acid (AA) with copper (II) ion. The main oxidation products were thymine glycol (TG) and N-formyl-N'-pyruvylurea (FPU). At higher concentration of O2, formation of FPU was favored, while TG was dominant at higher Cu(II) ion and lower O2 concentrations. Reaction mechanism involving hydroxy thyminyl radical was proposed.  相似文献   
8.
9.
10.
Human and nonhuman primates comprehend the actions of other individuals by detecting social cues, including others’ goal-directed motor actions and faces. However, little is known about how this information is integrated with action understanding. Here, we present the ontogenetic and evolutionary foundations of this capacity by comparing face-scanning patterns of chimpanzees and humans as they viewed goal-directed human actions within contexts that differ in whether or not the predicted goal is achieved. Human adults and children attend to the actor’s face during action sequences, and this tendency is particularly pronounced in adults when observing that the predicted goal is not achieved. Chimpanzees rarely attend to the actor’s face during the goal-directed action, regardless of whether the predicted action goal is achieved or not. These results suggest that in humans, but not chimpanzees, attention to actor’s faces conveying referential information toward the target object indicates the process of observers making inferences about the intentionality of an action. Furthermore, this remarkable predisposition to observe others’ actions by integrating the prediction of action goals and the actor’s intention is developmentally acquired.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号