首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   6篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   10篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1989年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有110条查询结果,搜索用时 46 毫秒
1.
2.
Due to its hemizygous inheritance and role in sex determination, the X‐chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X‐chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X‐linked loci or trans‐regulation of autosomal loci by the X. We found evidence of masculinization via up‐regulation of male‐benefit sexually antagonistic genes and down‐regulation of X‐linked female‐benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito‐nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.  相似文献   
3.
Life‐history modes can profoundly impact the biology of a species, and a classic example is the dichotomy between metamorphic (biphasic) and paedomorphic (permanently aquatic) life‐history strategies in salamanders. However, despite centuries of research on this system, several basic questions about the evolution of paedomorphosis in salamanders have not been addressed. Here, we use a nearly comprehensive, time‐calibrated phylogeny of spelerpine plethodontids to reconstruct the evolution of paedomorphosis and to test if paedomorphosis is (1) reversible; (2) associated with living in caves; (3) associated with relatively dry climatic conditions on the surface; and (4) correlated with limited range size and geographic dispersal. We find that paedomorphosis arose multiple times in spelerpines. We also find evidence for re‐evolution of metamorphosis after several million years of paedomorphosis in a lineage of Eurycea from the Edwards Plateau region of Texas. We also show for the first time using phylogenetic comparative methods that paedomorphosis is highly correlated with cave‐dwelling, arid surface environments, and small geographic range sizes, providing insights into both the causes and consequences of this major life history transition.  相似文献   
4.
We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.  相似文献   
5.
Natural hybridization among recently diverged species has traditionally been viewed as a homogenizing force, but recent research has revealed a possible role for interspecific gene flow in facilitating species radiations. Natural hybridization can actually contribute to radiations by introducing novel genes or reshuffling existing genetic variation among diverging species. Species that have been affected by natural hybridization often demonstrate patterns of discordance between phylogenies generated using nuclear and mitochondrial markers. We used Amplified Fragment Length Polymorphism (AFLP) data in conjunction with mitochondrial DNA in order to examine patterns of gene flow and nuclear-mitochondrial discordance in the Anaxyrus americanus group, a recent radiation of North American toads. We found high levels of gene flow between putative species, particularly in species pairs sharing similar male advertisement calls that occur in close geographic proximity, suggesting that prezygotic reproductive isolating mechanisms and isolation by distance are the primary determinants of gene flow and genetic differentiation among these species. Additionally, phylogenies generated using AFLP and mitochondrial data were markedly discordant, likely due to recent and/or ongoing natural hybridization events between sympatric populations. Our results indicate that the putative species in the A. americanus group have experienced high levels of gene flow, and suggest that their North American radiation could have been facilitated by the introduction of beneficial genetic variation from admixture between divergent populations coming into secondary contact after glacial retreats.  相似文献   
6.
The transition from aquatic to terrestrial eggs is a key evolutionary change that has allowed vertebrates to successfully colonize and exploit the land. Although most amphibians retain the primitive biphasic life cycle (eggs deposited in water that hatch into free-living aquatic larvae), direct development of terrestrial eggs has evolved repeatedly and may have been critical to the evolutionary success of several amphibian groups. We provide the first conclusive evidence for evolutionary reversal of direct development in vertebrates. The family Plethodontidae (lungless salamanders) contains the majority of salamander species, including major radiations of direct developers. We reconstruct the higher level phylogenetic relationships of plethodontid salamanders using molecular and morphological data and use this phylogeny to examine the evolution of direct development. We show that the predominantly biphasic desmognathines, previously considered the sister group of other plethodontids, are nested inside a group of direct-developing species (Plethodontini) and have re-evolved the aquatic larval stage. Rather than being an evolutionary dead end, the reversal from direct developing to biphasic life history may have helped communities in eastern North America to achieve the highest local diversity of salamander species in the world.  相似文献   
7.

Background

Habitat variation strongly influences the evolution of developmentally flexible traits, and may drive speciation and diversification. The plethodontid salamander Eurycea tynerensis is endemic to the geologically diverse Ozark Plateau of south-central North America, and comprises both strictly aquatic paedomorphic populations (achieving reproductive maturity while remaining in the larval form) and more terrestrial metamorphic populations. The switch between developmental modes has occurred many times, but populations typically exhibit a single life history mode. This unique system offers an opportunity to study the specific ecological circumstances under which alternate developmental and life history modes evolve. We use phylogenetic independent contrasts to test for relationships between a key microhabitat feature (streambed sediment) and this major life history polymorphism.

Results

We find streambed microstructure (sediment particle size, type and degree of sorting) to be highly correlated with life-history mode. Eurycea tynerensis is paedomorphic in streams containing large chert gravel, but metamorphoses in nearby streams containing poorly sorted, clastic material such as sandstone or siltstone.

Conclusion

Deposits of large chert gravel create loosely associated streambeds, which provide access to subsurface water during dry summer months. Conversely, streambeds composed of more densely packed sandstone and siltstone sediments leave no subterranean refuge when surface water dries, presumably necessitating metamorphosis and use of terrestrial habitats. This represents a clear example of the relationship between microhabitat structure and evolution of a major developmental and life history trait, and has broad implications for the role of localized ecological conditions on larger-scale evolutionary processes.  相似文献   
8.
Since the early 1970s, boine snakes (Boidae: Boinae) have served as a prime example of a group whose current distribution was shaped by vicariant events associated with the fragmentation of the supercontinent Gondwana. Early phylogenetic treatments of this group, and what were thought to be closely related groups (Erycinae and Pythoninae) based on morphological features, produced a relatively stable view of relationships that has strongly influenced subsequent molecular-based work. We examined 4307 base pairs (bp) of nucleotide sequence data obtained from five nuclear loci (c-mos, NT3, BDNF, RAG1, and ODC) and one mitochondrial locus (cyt b) for all genera of erycines and boines, plus representatives of other groups, including those previously thought to be closely allied with boines (Ungaliophiidae, Loxocemidae, Xenopeltidae, and Pythoninae). Our results suggest that the Boidae is not monophyletic, and its current division into three subfamilies (Erycinae, Boinae, and Pythoninae) does not accurately reflect evolutionary history. We find that the evolutionary relationships are better reflected by current geographic distributions and tectonic history than by the morphological characters that have long served as the foundation of boid phylogeny. Divergence time estimates suggest that this strong congruence between geography and phylogeny is the result of several vicariant and dispersal events in the Late Cretaceous and Paleocene associated with the fragmentation of the Gondwanan supercontinent. Our results demonstrate the importance of both vicariance and dispersal in shaping the global distributions of terrestrial organisms.  相似文献   
9.
Intralocus sexual conflict occurs when males and females experience sex-specific selection on a shared genome. With several notable exceptions, intralocus sexual conflict has been investigated in constant environments to which the study organisms have had an opportunity to adapt. However, a change in the environment can result in differential or even opposing selection pressures on males and females, creating sexual conflict. We used experimental evolution to explore the interaction between intralocus sexual conflict, sexual dimorphism and environmental variation in Drosophila melanogaster. Six populations were selected for adult desiccation resistance (D), with six matched control populations maintained in parallel (C). After 46 generations, the D populations had increased in survival time under arid conditions by 68% and in body weight by 20% compared to the C populations. The increase in size was the result of both extended development and faster growth rate of D juveniles. Adaptation to the stress came at a cost in terms of preadult viability and female fecundity. Because males are innately less tolerant of desiccation stress, very few D males survived desiccation-selection; while potentially a windfall for survivors, these conditions mean that most males’ fitness was determined posthumously. We conjectured that selection for early maturation and mating in males was in conflict with selection for survival and later reproduction in females. Consistent with this prediction, the sexes showed different patterns of age-specific desiccation resistance and resource acquisition, and there was a trend towards increasingly female-biased sexual size dimorphism. However, levels of desiccation resistance were unaffected, with D males and females increasing in parallel. Either there is a strong positive genetic correlation between the sexes that limits independent evolution of desiccation resistance, or fitness pay-offs from the strategy of riding out the stress bout are great enough to sustain concordant selection on the two sexes. We discuss the forces that mould fitness in males under a regimen where trade-offs between survival and reproduction may be considerable.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号