首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   11篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   9篇
  2014年   15篇
  2013年   14篇
  2012年   8篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   6篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1966年   1篇
  1965年   1篇
  1947年   3篇
  1944年   1篇
  1942年   1篇
  1941年   2篇
排序方式: 共有218条查询结果,搜索用时 36 毫秒
1.
The gene encoding N,N'-diacetylchitobiase (chitobiase) of the chitinolytic marine bacterium Vibrio harveyi has been isolated. While expression of the chitobiase gene (chb) was inducible by N,N'-diacetylchitobiose in V. harveyi, it was expressed constitutively when cloned in Escherichia coli, suggesting that controlling elements are not closely linked to chb. Chitobiase was found in the membrane fraction of E. coli cells containing plasmids with the cloned V. harveyi chb gene. When membranes of such cells were separated on Osborn gradients, chitobiase activity was found mainly in the outer membrane band. Translocation of the enzyme to the outer membrane was accompanied by cleavage of a signal peptide. A fusion protein, in which 22 amino acids from the amino terminus of prechitobiase were replaced with 21 amino acids from the pUC19 lacZ amino terminus, was not processed, and 99% of the activity was located in the cytoplasmic fraction. A homology to six amino acids surrounding the lipoprotein processing and modification site was found near the amino terminus of prechitobiase.  相似文献   
2.
In situ hybridization studies with [32P] and [3H] labelled antisense RNA probes were undertaken to determine optimal methods of tissue fixation, tissue sectioning, and conditions of hybridization, and to compare the relative merits of the two different radioactive labels. The distribution of somatostatin mRNA in neurons of rat brain using a labelled antisense somatostatin RNA probe was employed as a model for these studies. The highest degree of sensitivity for in situ hybridization was obtained using paraformaldehyde fixation and vibratome sectioning. Optimal autoradiographic localization of mRNA was obtained within 7 days using [32P] labelled probes. However, due to the high energy emittance of [32P], precise intracellular localization of hybridization sites was not possible. [3H] labelled RNA probes gave more precise cellular localization but required an average of 18-20 days autoradiographic exposure. The addition of the scintillator, PPO, decreased the exposure time for the localization of [3H] labelled probes to seven days. We also report a method for combined in situ hybridization and immunocytochemistry for the simultaneous localization of somatostatin in mRNA and peptide in individual neurons.  相似文献   
3.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   
4.
Pretreatment of rat brain membranes at pH 4.5 before assay at pH 7.4 modifies the function of GTP-binding proteins (G-proteins) by eliminating Gs-stimulated adenylate cyclase activity while increasing opiate-inhibited adenylate cyclase activity. To help characterize the molecular nature of the low pH effect, we labeled Gs and Gi alpha-subunits in both control and low pH-pretreated membranes with the GTP photoaffinity analog [32P]P3 (4-azidoanilido)-P1-5'-GTP ([32P]AAGTP). When membranes were preincubated with unlabeled AAGTP, a persistent inhibitory state of adenylate cyclase was produced, which was overcome in untreated membranes with high (greater than 1 microM) concentrations of guanylyl-5'-imidodiphosphate [Gpp(NH)p]. In low pH-pretreated membranes, this inhibition could not be overcome, and stimulation by Gpp(NH)p was eliminated. Maximal inhibition of adenylate cyclase achieved by incubation with AAGTP was not altered by low pH pretreatment. Incorporation of [32P]AAGTP into Gs (42 kilodaltons) or Gi/o (40 kilodaltons) was unaffected by low pH pretreatment; however, transfer of 32P from Gi/o to Gs, which occurs with low (10 nM) concentrations of Gpp(NH)p in untreated membranes, was severely retarded in low pH-pretreated membranes. Both the potency and efficacy of Gpp(NH)p in producing exchange of [32P]AAGTP from Gi/o to Gs were markedly reduced by low pH pretreatment. These results correlate the loss of Gs-stimulated adenylate cyclase with a loss of transfer of nucleotide from Gi/o to Gs alpha-subunits and suggest that the nucleotide exchange participates in the modulation of neuronal adenylate cyclase.  相似文献   
5.
Abstract: Sodium is generally required for optimal inhibition of adenylyl cyclase by Gl/o-coupled receptors. Canna-binoids bind to specific receptors that act like other members of the Gl/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCI ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCI providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCI in striatal membranes, but was maximal in the absence of NaCI in cerebellar membranes. Assay of [3H]WIN 55212–2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gl/o-coupled receptors, because both NaCI and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions.  相似文献   
6.
The resonances of nonprotonated aromatic carbons in natural abundance 13C NMR spectra of hen egg white lysozyme are assigned to specific residues of the amino acid sequence. Chemical shift considerations, the effect of pH, and partially relaxed Fourier transform NMR spectra are used to assign each resonance to one of the seven types of nonprotonated aromatic carbons of amino acid residues. Spectra of chemically modified lysozyme samples yield various assignments to specific residues in the sequence. Line-broadening effects caused by binding of the relaxation probes Gd3+ and 4-N-acetamido-2,2,6,6-tetramethylipiperidine-1-oxyl yield specific assignments which are fully consistent with those based on chemical modifications. The effects of paramagnetic shift reagents and amino sugar inhibitors do not yield any obvious specific assignments. The effect of pH on the chemical shift of Cgamma of His-15 yields a pKalpha in agreement with published values, and indicates that the imidazole form of His-15 exists mainly (or entirely) as the Nepsilon3-H tautomer. The effect of pH on the chemical shifts (measured up to pH 8.8, at 38 degrees) of Czeta and Cgamma of the 3 tyrosine residues yields crude pKalpha values of 9.5 and 10 for Tyr-23 and one of the other tyrosines, respectively. The 3rd tyrosine residue does not exhibit titration behavior.  相似文献   
7.
Some degree of wetland loss characterizes most coastal systems of the United States. This loss is generally reported as a decrease in wetland area, but most coastal land loss entails wetland submergence and conversion to open water. This concurrent increase in the area of aquatic habitat decreases the wetland:open water ratio, effectively diluting the area of remaining wetland relative to the aquatic system. The functional loss of intertidal wetlands to the ecosystem associated with this dilution effect may significantly alter ecological functions dependent on the interactive coupling of wetland and aquatic habitats. The magnitude of functional loss is strongly dependent on the wetland:water ratio of an estuary. In estuaries with open bay-type morphologies, the open water area is already large and functional loss of wetland by additional dilution may be only slightly greater than the areal wetland loss. Where estuaries are wetland-dominated, however, conversion of even a small percentage of wetland to water drastically alters the wetland:water ratio. In these cases, functional losses by dilution are much greater than the rate of areal wetland loss.In the Barataria Basin estuary, Louisiana, between 1967 and 1987, 15.4% of the salt marsh was lost (assuming a loss rate of 0.8% y–1 of the remaining marsh). We estimated that this 15% loss of salt marsh, by conversion to open water, may have resulted in a 27% reduction in the supply of inorganic nutrients and organic matter to the estuarine water column by the marsh, simply due to the dilution effects of the changed wetland:open water ratio. Functional losses of this magnitude may have serious implications to the estuarine ecosystem where intertidal wetlands support aquatic productivity by exporting nutrients and energy or where intertidal wetlands buffer aquatic eutrophication by importing excess nutrients and organic matter. It is conceivable that an estuary characterized by wetland loss may reach a point where, although some wetland remains, its functional value to the ecosystem is essentially gone.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号