首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2007年   1篇
  2002年   2篇
  1994年   1篇
  1993年   2篇
  1983年   1篇
排序方式: 共有7条查询结果,搜索用时 593 毫秒
1
1.
Glutelin accumulation in the apical spikelet of the top primary branch (superior spikelet) and the second spikelet of the lowest secondary branch (inferior spikelet) of the ear of the rice plant (Oryza sativa L.) was characterized during grain filling.In the superior spikelet, the accumulation of dry matter and nitrogen started immediately after flowering and rapidly reached the maturation level by 20 days after heading (DAH). At 7 DAH, total RNA content had already reached its maximum level and glutelin mRNA content 70% of its maximum. The increase in glutelin mRNA was followed by a rapid increase in glutelin between 7 and 16 DAH.In the inferior spikelet dry matter, nitrogen and glutelin accumulation were low immediately after flowering and increased only after grain filling of the superior spikelet was almost complete. Total RNA and glutelin mRNA increased much later at slower rates than in the superior spikelet.It is very likely that the retardation of dry matter, total nitrogen and glutelin accumulation in the inferior spikelet is due to retardation of differentiation and development of endosperm tissue, and to glutelin gene expression in endosperm cells. It is suggested that the delayed development resulted from limited partitioning of nutrients to the inferior spikelet at the early stage of ripening.  相似文献   
2.
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects.  相似文献   
3.
4.
By reducing the amount of ginkgo water-soluble polysaccharides, which occupy about 35% of the wet seed mass and interfere with the extraction of RNA, cDNA-quality mRNA was obtained from developing seeds of Ginkgo biloba. Based on the NH2-terminal 17-amino acid sequence and an internal 12-amino acid sequence derived from the basic subunit of ginnacin, 11S-seed storage protein family of ginkgo, two degenerate oligonucleotide primers were synthesized and used for polymerase chain reaction (PCR). The resulting PCR product was used for screening the above endosperm cDNA library, and a plaque carrying the 1614 bp cDNA insert, which contained the entire coding region for a precursor of ginnacin was isolated. This is the first reported cloning of cDNA from ginkgo seeds. The deduced primary sequence is composed of a signal peptide segment (25 amino acid residues) and an acidic subunit (248 residues) followed by a basic subunit (187 residues). It was also found that the post-translational cleavage site in the ginnacin precursor is the Asn-Asn rather than the Asn-Gly bond found in a variety of the major subunit precursors in 11S seed protein family known to date. We showed that a purified soybean extract and an extract of ginkgo seeds can specifically hydrolyze-Asn248-Asn249- but not -Asn249-Val250-, in the heptapeptide Gly-Asn248-Asn-Val-Glu-Glu-Leu that corresponds to the ginnacin cleavage region.Abbreviations SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PVDF polyvinylidene difluoride - CBB Coomassie Brilliant Blue - HPLC high-performance liquid chromatography - bp base pair(s) - PCR polymerase chain reaction  相似文献   
5.
In this note we examine Eigen's nonlinear rate equations for the relation of coupled biomacromolecules. We obtain an exact solution to the equations for constant overall population densities and constant rate parameters. We conclude that there is only one stationary solution where all molecular species coexist when they are coupled by mutation.  相似文献   
6.
Molecular characterization of plant group II chaperonin (CCT, c-cpn, or TriC) still remains elusive. By PCR-based cloning techniques using soybeans, we have made a successful attempt to clone a delta-subunit homologue of CCT (CCTdelta). This subunit is responsible for the binding of an in vivo substrate, alpha-actin, by assisting the correct folding of the cytoskeletal protein in mouse, and the occurrence of the subunit homologue in plant CCT was unclear. As the cloning strategy, a putative amino acid segment, NH(2)-Gly-Gly-Gly-Ala-Pro-Glu-COOH, which is tightly conserved in all known animal and yeast CCTdelta subunits, was chosen for designing a degenerate primer of the PCR-cloning. The resultant 1881-bp cDNA was found to have an open-reading frame of 533 amino acids with a calculated molecular mass of 57,677 Da and to share about 58-65% identity overall at the amino acid level with the corresponding subunits known to date. Using antibodies raised against Escherichia coli-produced soybean insoluble CCTdelta as a monitoring tool, we purified soybean CCT from the extract of its immature seeds. STEM images demonstrated that the molecular shape of soybean CCT is a double eight-membered ring, which resembles the known group II chaperonins. The CCT also reactivated a denatured firefly luciferase with a significant, but limited level of the native enzymic activity in an in vitro system. Northern blot analysis showed that soybean CCTdelta gene, which is intronless and composed of a small family, was only expressed at a very early stage of seed development of soybean.  相似文献   
7.
Beta-amylase (EC 3.2.1.2) is starch-hydrolyzing exo-type enzyme that can catalyze the successive liberation of beta-maltose from the nonreducing ends of alpha-1,4-linked glucopyranosyl polymers. There is a well-known phenomenon called multiple or repetitive attack where the enzyme releases several maltose molecules in a single enzyme-substrate complex. In order to understand it further, we examined the beta-amylase-catalyzed reaction using maltooligosaccharides. The Monte Carlo method was applied for simulation of the beta-amylase-catalyzed reaction including the multiple attack mechanism. Through site-directed mutagenesis, we have successfully prepared a mutant enzyme which may be simulated as a multiple attack action reduced one with retaining significant hydrolytic activity. From the results of X-ray structure analysis of the mutant enzyme, it was clarified that one carboxyl residue plays a very important role in the multiple attack. The multiple attack action needs the force of enzyme sliding on the substrate. In addition, it is important for the multiple attack that the enzyme and substrate have the characteristics of a stable productive substrate-enzyme complex through a hydrogen bond between the nonreducing end of the substrate and the carboxyl residue of the enzyme.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号