首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
2.
IntroductionPedicle screws are commonly employed to restore spinal stability and correct deformities. The Renaissance robotic system was developed to improve the accuracy of pedicle screw placement.PurposeIn this study, we developed an intraoperative classification system for evaluating the accuracy of pedicle screw placements through secondary registration. Furthermore, we evaluated the benefits of using the Renaissance robotic system in pedicle screw placement and postoperative evaluations. Finally, we examined the factors affecting the accuracy of pedicle screw implantation.ResultsThrough use of the Renaissance robotic system, the accuracy of Kirschner-wire (K-wire) placements deviating <3 mm from the planned trajectory was determined to be 98.74%. According to our classification system, the robot-guided pedicle screw implantation attained an accuracy of 94.00% before repositioning and 98.74% after repositioning. However, the malposition rate before repositioning was 5.99%; among these placements, 4.73% were immediately repositioned using the robot system and 1.26% were manually repositioned after a failed robot repositioning attempt. Most K-wire entry points deviated caudally and laterally.ConclusionThe Renaissance robotic system offers high accuracy in pedicle screw placement. Secondary registration improves the accuracy through increasing the precision of the positioning; moreover, intraoperative evaluation enables immediate repositioning. Furthermore, the K-wire tends to deviate caudally and laterally from the entry point because of skiving, which is characteristic of robot-assisted pedicle screw placement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号