首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  2018年   40篇
  2017年   10篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有64条查询结果,搜索用时 675 毫秒
1.
2.
By a detailed ontogenetic study of Polemonium caeruleum pollen, tracing each stage of development at high TEM resolution, we aim to understand the establishment of the pollen wall and to unravel the mechanisms underlying sporoderm development. The main steps of exine ontogeny in Polemonium caeruleum, observed in the microspore periplasmic space, are spherical units, gradually transforming into columns, then to rod-like units (procolumellae), the appearance of the initial tectum, growth of columellae in height and tectum in thickness and initial sporopollenin accumulation on them, the appearance of the endexine lamellae and of dark-contrasted particles on the tectum, the appearance of a sponge-like layer and of the intine in aperture sites, the appearance of the foot layer on the base of the sponge-like layer and of spinules on the tectum, and massive sporopollenin accumulation. This sequence of developmental events fits well to the sequence of self-assembling micellar mesophases. This gives (together with earlier findings and experimental exine simulations) strong evidence that genome and self-assembly probably share control of exine formation. It is highly probable that self-assembly is an intrinsic instrument of evolution.  相似文献   
3.
Latex is a complex plant secretion with both ecological and economic importance. There is little information currently available on the cytological aspects of the ontogenesis of anastomosed laticifers, the ducts originating through the lysis of adjacent cell walls. Hancornia speciosa is a tree typical of the Cerrado (neotropical savanna) biome. Its latex has medicinal value and is also used to produce rubber. The ontogenesis of its laticifers and the process of latex synthesis are described here. Structural, cytochemical, and ultrastructural analyses of the stem apex and phytochemical analyses of the latex were performed. Laticifer ontogenesis begins early in promeristem cells and subsequently extends through the procambial region. The laticifer precursor cells demonstrate intense metabolic activity, evidenced by starch accumulation and the proliferation of mitochondria, dictyosomes, endoplasmic reticulum, and ribosomes—resulting in the thickening of the cell walls and accumulations of oil droplets in the cytoplasm and fibrous materials in the vacuoles. The ontogenetic process culminates with the partial dissolution of adjacent cell walls and the collapse of the cytoplasm, giving rise to anastomosed laticifers distributed throughout the phloem and adjacent regions of the cortex and medulla. The latex itself is composed of terpenes, mucilage, proteins, alkaloids, and organelle residues that form an emulsion. Laticifer development takes place in three phases: (1) the formation of the emulsion in the promeristem, (2) anastomosis and the collapse of the cytoplasm in the distal region of the procambium, and (3) the maturation of laticifers and latex storage in a central vacuole in the proximal region of the procambium.  相似文献   
4.
Previously, we described the unique feature of telomeric regions in Iberian shrew Sorex granarius: its telomeres have two ranges of size, very small (3.8 kb of telomeric repeats on average) and very large discontinuous telomeres (213 kb) interrupted with 18S rDNA. In this study, we have demonstrated extraordinary replication pattern of S. granarius large telomeres that have not been shown before in other studied mammal. Using the ReD-FISH procedure, we observed prolonged, through S period, large telomere replication. Furthermore, revealed ReD-FISH asymmetric signals were probably caused by partial replication of telomeres within an hour of 5-bromodeoxyuridine treatment due to the large size and special organization. We also found that in contrast to the telomeric halo from primary fibroblasts of bovine, mink, and common shrew, telomere halo of S. granarius consists of multiple loops bundled together, some of which contain rDNA. Here, we suggested several replicons firing possibly stochastic in each large telomere. Finally, we performed the TIF assay to reveal DNA damage responses at the telomeres, and along with TIF in nuclei, we found large bodies of telomeric DNA and ?-H2AX in the cytoplasm and on the surface of fibroblasts. We discuss the possibility of additional origin activation together with recombination-dependent replication pathways, mainly homologous recombination including BIR for replication fork stagnation overcoming and further S. granarius large telomere replication.  相似文献   
5.
The dynamic microtubule cytoskeleton plays fundamental roles in the growth and development of plants including regulation of their responses to environmental stress. Plants exposed to hyper-osmotic stress commonly acclimate, acquiring tolerance to variable stress levels. The underlying cellular mechanisms are largely unknown. Here, we show, for the first time, by in vivo imaging approach that linear patterns of phospholipase Dδ match the localization of microtubules in various biological systems, validating previously predicted connection between phospholipase Dδ and microtubules. Both the microtubule and linear phospholipase Dδ structures were disintegrated in a few minutes after treatment with oryzalin or salt. Moreover, by using immunofluorescence confocal microscopy of the cells in the root elongation zone of Arabidopsis, we have shown that the cortical microtubules rapidly depolymerized within 30 min of treatment with 150 or 200 mM NaCl. Within 5 h of treatment, the density of microtubule arrays was partially restored. A T-DNA insertional mutant lacking phospholipase Dδ showed poor recovery of microtubule arrays following salt exposition. The restoration of microtubules was significantly retarded as well as the rate of root growth, but roots of overexpressor GFP-PLDδ prepared in our lab, have grown slightly better compared to wild-type plants. Our results indicate that phospholipase Dδ is involved in salt stress tolerance, possibly by direct anchoring and stabilization of de novo emerging microtubules to the plasma membrane, providing novel insight into common molecular mechanism during various stress events.  相似文献   
6.
The larvae of Bittacidae, a cosmopolitan family in Mecoptera, have an interesting habit of spraying the body surface with soil through the anus after hatching, and each molts. The fine structure of Malpighian tubules, however, remains largely unknown in the larvae of Bittacidae to date. Here, we studied the ultrastructure of the larval Malpighian tubules in the hangingfly Terrobittacus implicatus (Huang & Hua) using scanning and transmission electron microscopy. The larvae of T. implicatus have six elongate Malpighian tubules at the junction of the midgut and hindgut. The tubule comprises a basal lamina, a single-layered epithelium, and a central lumen. The basal plasma membranes of the epithelial cells are conspicuously infolded and generate a labyrinth. The epithelium consists of two types of cells: large principal cells and scattered stellate cells. Mitochondria and cisterns of rough endoplasmic reticulum are numerous in the principal cells but are sparsely distributed in the stellate cells, indicating that the principal cells are active in transport. On the other hand, spherites are only abundant in the principal cells and are likely associated with the soil-spraying habit of the larvae.  相似文献   
7.
DNA and machinery for gene expression have been discovered in chloroplasts during the 1960s. It was soon evident that the chloroplast genome is relatively small, that most genes for chloroplast-localized proteins reside in the nucleus and that chloroplast membranes, ribosomes, and protein complexes are composed of proteins encoded in both the chloroplast and the nuclear genome. This situation has made the existence of mechanisms highly probable that coordinate the gene expression in plastids and nucleus. In the 1970s, the first evidence for plastid signals controlling nuclear gene expression was provided by studies on plastid ribosome deficient mutants with reduced amounts and/or activities of nuclear-encoded chloroplast proteins including the small subunit of Rubisco, ferredoxin NADP+ reductase, and enzymes of the Calvin cycle. This review describes first models of plastid-to-nucleus signaling and their discovery. Today, many plastid signals are known. They do not only balance gene expression in chloroplasts and nucleus during developmental processes but are also generated in response to environmental changes sensed by the organelles.  相似文献   
8.
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.  相似文献   
9.
One-dimensional (1D) gold nanostructures have been extensively studied due to their potential applications in nanoelectronic devices. Using first-principles calculations, composites consisting of a well-defined linear Au n (n?=?2–4) chain encapsulated in a (9,0) single-walled carbon nanotube (SWCNT) were studied. The translational energy barrier of a single Au atom in a (9,0) SWCNT was found to be 0.03 eV. This low barrier guaranteed the formation of Au n @ (9,0) SWCNT (n?=?1–4) composites. Bond lengths, differential charge densities, and electronic band structures of the composites were studied. The average Au–Au bond lengths in the composites were found to be almost the same as those in the corresponding free-standing linear Au n . The average bond length increased as the number of Au atoms increased. Charge transfer in all of these composites was slight, although a few valence electrons were transferred from the (9,0) SWCNT and the Au chains to intercalations. The conductivities of the encapsulated linear Au n (n?=?2–4) chains were enhanced to some extent by encapsulating them in the SWCNT.  相似文献   
10.
Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号