首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有34条查询结果,搜索用时 24 毫秒
1.
Isovaleric acidemia (IVA, MIM 248600) can be a severe and potentially life-threatening disease in affected neonates, but with a positive prognosis on treatment for some phenotypes. This study presents the first application of metabolomics to evaluate the metabolite profiles derived from urine samples of untreated and treated IVA patients as well as of obligate heterozygotes. All IVA patients carried the same homozygous c.367 G > A nucleotide change in exon 4 of the IVD gene but manifested phenotypic diversity. Concurrent class analysis (CONCA) was used to compare all the metabolites from the original complete data set obtained from the three case and two control groups used in this investigation. This application of CONCA has not been reported previously, and is used here to compare four different modes of scaling of all metabolites. The variables important in discrimination from the CONCA thus enabled the recognition of different metabolic patterns encapsulated within the data sets that would not have been revealed by using only one mode of scaling. Application of multivariate and univariate analyses disclosed 11 important metabolites that distinguished untreated IVA from controls. These included well-established diagnostic biomarkers of IVA, endogenous detoxification markers, and 3-hydroxycaproic acid, an indicator of ketosis, but not reported previously for this disease. Nine metabolites were identified that reflected the effect of treatment of IVA. They included detoxification products and indicators related to the high carbohydrate and low protein diet which formed the hallmark of the treatment. This investigation also provides the first comparative metabolite profile for heterozygotes of this inherited metabolic disorder. The detection of informative metabolites in even very low concentrations in all three experimental groups highlights the potential advantage of the holistic mode of analysis of inherited metabolic diseases in a metabolomics investigation.  相似文献   
2.
The diagnosis of respiratory chain deficiencies (RCDs) is complicated and the need for a diagnostic biomarker or biosignature has been widely expressed. In this study, the metabolic profile of a selected group of 29 RCD patients, with a predominantly muscle disease phenotype, and 22 controls were investigated using targeted and untargeted analyses of three sub-sections of the human metabolome, including urinary organic acids and amino acids [measured by gas chromatography–mass spectrometry (GC–MS)], as well as acylcarnitines (measured by electrospray ionization tandem MS). Although MS technologies are highly sensitive and selective, they are restrictive by being applied only to sub-sections of the metabolome; an untargeted nuclear magnetic resonance (NMR) spectroscopy approach was therefore also included. After data reduction and pre-treatment, a biosignature comprising six organic acids (lactic, succinic, 2-hydroxyglutaric, 3-hydroxyisobutyric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids), six amino acids (alanine, glycine, glutamic acid, serine, tyrosine and α-aminoadipic acid) and creatine, was constructed from uni- and multivariate statistical analyses and verified by cross-validation. The results presented here provide the first proof-of-concept that the metabolomics approach is capable of defining a biosignature for RCDs. We postulate that the composite of organic acids ≈ amino acids > creatine > betaine > carnitines represents the basic biosignature for RCDs. Validated through a prospective study, this could offer an improved ability to assign individual patients to a group with defined RCD characteristics and improve case selection for biopsy procedures, especially in infants and children.  相似文献   
3.
Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species.  相似文献   
4.
Most mitochondria-based methods used to investigate toxins require the use of relatively large amounts of material and hence compromised sensitivity in assay. We adopted procedures from methods initially developed to diagnose mitochondrial encephalomyopathies and unified these into a single assay. Eukaryotic cell membranes are selectively permeabilized with digitonin to render a system in which mitochondrial respiration can be measured rapidly and with considerable sensitivity. Mitochondria remain intact, uninjured, and in their natural environment where mitochondrial respiration can be measured in situ under physiologically relevant conditions. This approach furthermore allows measurement of toxin effects on individual mitochondrial complexes. Numerous compounds at varying concentrations can be screened for mitochondrial toxicity, while the site of mitochondrial inhibition can be determined simultaneously. We used this assay to investigate, in murine neuroblastoma (N-2alpha) cells, the mitochondrial inhibitory properties of the parkinsonian-inducing proneurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and its neurotoxic monoamine oxidase-B (MAO-B)-generated metabolite, the 1-methyl-4-phenylpyridinium species (MPP(+)). Within the time frame of each measurement (15 min), MPTP (< or = 1 mM) did not interfere with in situ mitochondrial respiration. As expected, MPP(+) was found to be a potent Complex I inhibitor but surprisingly also found to inhibit Complex IV. Optimized conditions for performing this assay are provided.  相似文献   
5.
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.  相似文献   
6.

Introduction

Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.

Objective

To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.

Methods

Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.

Results

Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.

Conclusions

From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
  相似文献   
7.
Nitrofurazone is reduced by cellular nitroreductases to form N2-deoxyguanine (N2-dG) adducts that are associated with mutagenesis and lethality. Much attention recently has been given to the role that the highly conserved polymerase IV (Pol IV) family of polymerases plays in tolerating adducts induced by nitrofurazone and other N2-dG-generating agents, yet little is known about how nitrofurazone-induced DNA damage is processed by the cell. In this study, we characterized the genetic repair pathways that contribute to survival and mutagenesis in Escherichia coli cultures grown in the presence of nitrofurazone. We find that nucleotide excision repair is a primary mechanism for processing damage induced by nitrofurazone. The contribution of translesion synthesis to survival was minor compared to that of nucleotide excision repair and depended upon Pol IV. In addition, survival also depended on both the RecF and RecBCD pathways. We also found that nitrofurazone acts as a direct inhibitor of DNA replication at higher concentrations. We show that the direct inhibition of replication by nitrofurazone occurs independently of DNA damage and is reversible once the nitrofurazone is removed. Previous studies that reported nucleotide excision repair mutants that were fully resistant to nitrofurazone used high concentrations of the drug (200 μM) and short exposure times. We demonstrate here that these conditions inhibit replication but are insufficient in duration to induce significant levels of DNA damage.Replication in the presence of DNA damage is thought to produce most of the mutagenesis, genomic rearrangements, and lethality that occur in all cells. UV-induced photoproducts, X-ray-induced strand breaks, psoralen- or cis-platin-interstrand cross-links, oxidized bases from reactive oxygen species, and base depurination are just a few of the structurally distinct challenges that the replication machinery must overcome. It seems likely that the mechanisms that process these lesions will vary depending on the nature of the impediment.While a number of the lesions described above are known to block replication, the events associated with UV-induced damage have been the most extensively characterized. UV irradiation causes the formation of cyclobutane pyrimidine dimers and 6-4 photoproducts in DNA that block the progression of the replication fork (16, 29, 30, 37). Following the arrest of replication at UV-induced damage, RecA and several RecF pathway proteins are required to process the replication fork such that the blocking lesion is removed or bypassed (2, 5, 6, 8-10). Cells lacking either RecA or any of several RecF pathway proteins are hypersensitive to UV-induced damage and fail to recover replication following disruption by the lesions (2, 6, 10). RecBCD is an exonuclease/helicase complex that is involved in repairing double-strand breaks (38). It also is required for resistance to UV-induced damage, although it is not required to process or restore disrupted replication forks, and the substrates it acts upon after UV irradiation currently remain unclear (3, 10, 19).Survival and the ability to resume DNA synthesis following UV-induced damage depend predominantly on the removal of the lesions by nucleotide excision repair (5, 7, 36). Cells deficient in nucleotide excision repair are unable to remove UV-induced DNA lesions and exhibit elevated levels of mutagenesis, strand exchanges, rearrangements, and cell lethality (16, 33, 34). In cases where replication fork processing or lesion repair is prevented, the recovery of replication and survival become entirely dependent on translesion synthesis by DNA polymerase V (Pol V) (6). However, in repair-proficient cells, the contribution of translesion synthesis to recovery and survival is minor and is detected only following UV doses that exceed the repair capacity of the cell (5, 6).Less is known about how replication recovers from other forms of DNA damage. We chose to characterize nitrofurazone, because a number of studies suggested that N2-deoxyguanine (N2-dG) adducts induced by this and other agents would be processed differently than UV-induced lesions. Nitrofurazone is a topical antibacterial agent that historically has been used for treating burns and skin grafts in patients and animals (14, 15, 32). Nitrofurazone toxicity is known to require activation by cellular nitroreductases (25, 42). However, the mechanism and targets of its antimicrobial properties have yet to be fully elucidated. In addition to its antimicrobial properties, the reduced nitrofurazone metabolites also target DNA and have been shown to induce free radical damage, strand breaks, and N2-dG adducts (26, 40, 42, 45), and they are mutagenic and carcinogenic in rodent models (1, 15, 24, 39).Whereas nucleotide excision repair is the predominant mechanism required for survival after UV-induced damage, a number of studies suggest that translesion synthesis plays a larger role in survival after nitrofurazone-induced DNA damage. dinB mutants lacking Pol IV were shown to be hypersensitive to nitrofurazone compared to cells that constitutively express the polymerase (17). Biochemically, Pol IV and a number of Pol IV homologs from other organisms have been shown to efficiently replicate over a range of N2-dG adducts in vitro (17, 35, 44). In addition, several studies have reported that uvrA mutants, which are defective in nucleotide excision repair, do not exhibit any hypersensitivity to nitrofurazone or other agents that induce similar adducts in vivo (12, 21, 27). Early studies also observed a direct correlation between nitrofurazone-induced mutations and lethality, suggesting that mutagenic lesions persist in the DNA to cause toxicity (21, 23, 27, 43). Consistent with these observations, nitrofuran-induced lesions were found to be poor substrates for nucleotide excision repair in vitro (46).Taken together, these observations suggest to us that the cellular response to nitrofurazone will be distinct from its response to UV irradiation. However, no study has examined the relative contributions that nucleotide excision repair, translesion synthesis, or recombination has in recovering from nitrofurazone-induced damage. In this study, we characterized the mechanism by which nitrofurazone inhibits DNA replication and identified the genes that contribute to the recovery, survival, and mutagenesis of Escherichia coli treated with nitrofurazone. In contrast to previous studies, we found that survival following nitrofurazone-induced damage depends predominantly on nucleotide excision repair. Similarly to UV-induced DNA damage, both the RecF and RecBC pathways contribute to survival following nitrofurazone-induced DNA damage. The contribution of translesion polymerases to survival was minor and was mediated by Pol IV. In addition, we found that nitrofurazone can act to inhibit DNA replication directly when used at higher concentrations. The direct inhibition of replication is reversible and occurs independently of DNA damage, suggesting that DNA is not the primary target of its antimicrobial properties.  相似文献   
8.
Following arrest by UV-induced DNA damage, replication is restored through a sequence of steps that involve partial resection of the nascent DNA by RecJ and RecQ, branch migration and processing of the fork DNA surrounding the lesion by RecA and RecF-O-R, and resumption of DNA synthesis once the blocking lesion has been repaired or bypassed. In vitro, the primosomal proteins (PriA, PriB, and PriC) and Rep are capable of initiating replication from synthetic DNA fork structures, and they have been proposed to catalyze these events when replication is disrupted by certain impediments in vivo. Here, we characterized the role that PriA, PriB, PriC, and Rep have in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that the partial degradation and processing of the arrested replication fork occurs normally in both rep and primosome mutants. In each mutant, the nascent degradation ceases and DNA synthesis initially resumes in a timely manner, but the recovery then stalls in the absence of PriA, PriB, or Rep. The results demonstrate a role for the primosome and Rep helicase in overcoming replication forks arrested by UV-induced damage in vivo and suggest that these proteins are required for the stability and efficiency of the replisome when DNA synthesis resumes but not to initiate de novo replication downstream of the lesion.  相似文献   
9.
The mass specific rates of oxygen consumption (M (O(2)) M(b)(-1)), ammonia excretion (M (NH(4)-N) M(b)(-1)) and carbon dioxide production (M (CO(2)) M(b)(-1)) were measured after 7, 14 and 21 days exposure of adult Potamonautes warreni to a sublethal concentration of 1.0 mg Cu l(-1) (15.75 micromol l(-1)). Under control (non-copper-exposed) conditions M (O(2)) M(b)(-1) was 35.7+/-8.5 micromol kg(-1)min(-1) (mean+/-S.D.), M (NH(4)-N) M(b)(-1) 2.92+/-0.26 micromol kg(-1)min(-1) and M (CO(2)) M(b)(-1) 25.6+/-9.0 micromol kg(-1)min(-1). The oxygen:nitrogen (O:N) ratio and respiratory quotient (RQ) were 24.5+/-3.0 and 0.80+/-0.06, respectively. M (O(2)) M(b)(-1) of copper-exposed crabs showed a significant increase after 7 and 14 days, but decreased significantly by 40% after 21 days. From the increased O:N ratio and RQ below 0.7, it is clear that crabs exposed to 1 mg Cul(-1) metabolize lipids during the entire 21-day exposure period. Free fatty acids in the midgut gland were determined by GC-MS, and showed increases of up to 600% in some C14 to C18 fatty acids. It is proposed that the excess lipids inhibit the pyruvate dehydrogenase complex, leading to the acceleration of the gluco- and glyco-neogenic pathways. Increased glyconeogenesis results in elevated glycogen concentrations in all tissues after 21 days. Experiments on acutely exposed P. warreni show increased incorporation of 14C-labelled lactate into glycogen.  相似文献   
10.
A genome annotation-driven approach to cloning the human ORFeome   总被引:1,自引:1,他引:0  
We have developed a systematic approach to generating cDNA clones containing full-length open reading frames (ORFs), exploiting knowledge of gene structure from genomic sequence. Each ORF was amplified by PCR from a pool of primary cDNAs, cloned and confirmed by sequencing. We obtained clones representing 70% of genes on human chromosome 22, whereas searching available cDNA clone collections found at best 48% from a single collection and 60% for all collections combined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号