首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2006年   2篇
  1983年   1篇
  1978年   2篇
排序方式: 共有16条查询结果,搜索用时 281 毫秒
1.
2.
3.
4.
5.
Germination of Nicotiana sylvestris pollen is inhibited by T2 toxin and diacetoxyscirpenol. Based on this observation, an assay method was developed that is capable of detecting nanogram quantities of these toxins.  相似文献   
6.
Although GHRH has previously been shown to regulate proliferation of breast cancer cells and prevent apoptosis, the intracellular pathways mediating this effect have not been clarified. Exogenous GHRH stimulated a dose-dependent proliferative response within 24 h in MDA-231, as well as in T47D cells and in MCF-7 cells transfected with the GHRH receptor. The proliferation of MDA-MB-231 (MDA-231) cells was associated with an increase in tritiated thymidine uptake. In addition, phosphorylation of MAPK was rapidly stimulated by GHRH. The phosphorylation of MAPK by GHRH was prevented by transfection of the cells with dominant-negative Ras or Raf or by pretreatment of cells with Raf kinase 1 inhibitor. The inhibition of Ras and Raf, as well as the inhibition of MAPK phosphorylation by PD98059, also prevented GHRH-induced cell proliferation. Finally, pretreatment of cells with the somatostatin analog, BIM23014, also prevented GHRH-induced MAPK phosphorylation and cell proliferation. These results indicate that GHRH stimulates dose-dependent cell proliferation of MDA-231 breast cancer cells through a pathway that requires Ras, Raf, and MAPK phosphorylation. The results also provide support for a possible autocrine/paracrine antagonism between GHRH and somatostatin in the regulation of MDA-231 cell population maintenance. Taken together, the studies provide further insight into the possible role of GHRH as a growth factor in breast cancer.  相似文献   
7.
Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.  相似文献   
8.
Tryptophan enhancement of somatic embryogenesis in rice   总被引:2,自引:0,他引:2       下载免费PDF全文
Cereal embryos can produce two types of callus. One type, termed “embryogenic,” consists of small meristematic-like cells and gives rise to many plants by somatic embryogenesis if placed on a suitable regeneration medium. The other is termed “nonembryogenic” and consists of long tubular cells which gives rise to few or no plants. High concentrations of tryptophan increased the formation of embryogenic callus in three rice cultivars (Oryza sativa L. Calrose 76, Pokkali, and IR 36) but not in four others (Mahsuri, Bg 400-1, H4, and Giza 159). The best concentration of tryptophan for Pokkali and Calrose 76 was 100 micrograms per milliliter, and for IR 36, 50 micrograms per milliliter. Indoleacetic acid at 100 micrograms per milliliter promoted an effect similar to that of tryptophan on Calrose 76. The difference between japonica (Calrose 76, Giza 159) and indica (Pokkali, IR 36) varieties is not the causal factor for the difference in response to tryptophan. Kinetin does not appear to be a requirement for embryogenic callus formation in Calrose 76. Plant regeneration from Calrose 76 embryogenic callus occurred at low levels in media containing no hormones. 6-benzyladenine, or 2,3,5-triiodobenzoic acid but not indoleacetic acid at 0.1 to 0.5 micrograms per milliliter significantly increased regeneration.  相似文献   
9.
Germination of Nicotiana sylvestris pollen is inhibited by T2 toxin and diacetoxyscirpenol. Based on this observation, an assay method was developed that is capable of detecting nanogram quantities of these toxins.  相似文献   
10.
Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQRCS) as quantified by CQ IC50 shift, account for only 10–20% of cytocidal CQR (CQRCC) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQRCS vs CQRCC phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQRCC, leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQRCC. Taken together, the data show that an unusual autophagy – like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQRCC phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号