首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   35篇
  2023年   2篇
  2021年   15篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   11篇
  2015年   17篇
  2014年   25篇
  2013年   22篇
  2012年   25篇
  2011年   21篇
  2010年   27篇
  2009年   23篇
  2008年   16篇
  2007年   33篇
  2006年   18篇
  2005年   20篇
  2004年   8篇
  2003年   15篇
  2002年   10篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   2篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有445条查询结果,搜索用时 31 毫秒
1.
2.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   
3.
C Narasimhan  C S Lai 《Biochemistry》1989,28(12):5041-5046
Changes in local environment of the free sulfhydryl groups in plasma fibronectin upon adsorption of the protein to polystyrene beads have been examined by electron spin resonance (ESR) spin-label spectroscopy. The two free sulfhydryl groups per subunit of plasma fibronectin were modified chemically with an [15N, 2H]maleimide spin-label. For soluble fibronectin, both free sulfhydryl groups are shown to be in confined environments as evidenced from the labeled protein exhibiting a strongly immobilized ESR spectrum as described previously using [14N, 1H]maleimide spin-labels [Lai, C.-S., & Tooney, N. M. (1984) Arch. Biochem. Biophys. 228, 465-473]. When the labeled protein was adsorbed to the beads, half of the strongly immobilized component was found to convert into a weakly immobilized component, a result indicating that one of the two labeled sites becomes exposed and exhibit a fast tumbling motion. Experiments conducted using various spin-labeled fibronectin fragments suggest that the newly exposed labeled site is located between the DNA-binding and the cell-binding regions of the molecule. The data obtained indicate that, upon adsorption to polystyrene beads, plasma fibronectin undergoes a conformational change through which the buried free sulfhydryl group near the cell-binding region of the molecule is exposed. This observation may have important implications regarding the expression of cell adhesive properties of the fibronectin molecule.  相似文献   
4.
The nucleotide sequence of the fabA gene encoding beta-hydroxydecanoyl thioester dehydrase, a key enzyme of the unsaturated fatty acid synthesis pathway of Escherichia coli, has been determined by the dideoxynucleotide sequencing technique. Most of the sequence was obtained by sequencing intragenic insertions of the transposon, Tn1000, isolated in vivo. A synthetic primer complementary to a portion of the inverted repeat sequences at the ends of the transposon was used to prime DNA synthesis into the flanking fabA sequences. The gene is composed of 516 nucleotides (171 amino acid residues) encoding a protein with a molecular weight of 18,800. Approximately half of the derived amino acid sequence was confirmed by automated Edman sequencing of peptides obtained by cyanogen bromide cleavage. The active site histidine residue (His-70) has been identified by analysis of the peptides labeled by reaction with 14C-labeled 3-decynoyl-N-acetylcysteamine, a specific mechanism-activated inhibitor. A cysteine residue (Cys-69) adjacent to the active site histidine may play the role in catalysis previously assigned to a tyrosine residue. We also report a simplified purification process for the dehydrase beginning with extracts of a brain which greatly overproduces the enzyme.  相似文献   
5.
6.
7.
8.
9.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号