首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2012年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   3篇
  1993年   1篇
  1978年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Hyperpolarization-activated cyclic nucleotide-sensitive (HCN) channels mediate the I(f) current in heart and I(h) throughout the nervous system. In spiking neurons I(h) participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of I(h) in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated-patch recordings in the dark-adapted slice found that RBCs exhibit I(h), and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency-modulated current stimuli (0.1-30 Hz), displays band-pass behavior in the range of I(h) activation. Theoretical modeling and pharmacological blockade demonstrate that high-pass filtering of input signals by I(h), in combination with low-pass filtering by passive properties, fully accounts for this frequency-tuning. Correcting for the depolarization introduced by shunting through the pipette-membrane seal, leads to predict that in darkness I(h) is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1-2, in combination with markers of RBCs (PKC) and rod-RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by I(h) onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors.  相似文献   
2.
We previously reported that pre- and postsynaptic 5-hydroxytryptamine (5-HT) receptors effectively control glutamatergic transmission in adult rat cerebellum. To investigate where 5-HT acts in the glutamate ionotropic receptors/nitric oxide/guanosine 3',5'-cyclic monophosphate (cGMP) pathway, in the present study 5-HT modulation of the cGMP response to the nitric oxide donor S-nitroso-penicillamine (SNAP) was studied in adult rat cerebellar slices. While cGMP elevation produced by high-micromolar SNAP was insensitive to 5-HT, 1 microM SNAP, expected to release nitric oxide in the low-nanomolar concentration range, elicited cGMP production and endogenous glutamate release both of which could be prevented by activating presynaptic 5-HT1D receptors. Released nitric oxide appeared responsible for cGMP production and glutamate release evoked by 1 microM SNAP, as both the effects were mimicked by the structurally unrelated nitric oxide donor 2-(N,N-diethylamino)-diazenolate-2-oxide (0.1 microM). Dependency of the 1 microM SNAP-evoked release of glutamate on external Ca2+, sensitivity to presynaptic release-regulating receptors and dependency on ionotropic glutamate receptor functioning, suggest that nitric oxide stimulates exocytotic-like, activity-dependent glutamate release. Activation of ionotropic glutamate receptors/nitric oxide synthase/guanylyl cyclase pathway by endogenously released glutamate was involved in the cGMP response to 1 microM SNAP, as blockade of NMDA/non-NMDA receptors, nitric oxide synthase or guanylyl cyclase, abolished the cGMP response. To conclude, in adult rat cerebellar slices low-nanomolar exogenous nitric oxide could facilitate glutamate exocytotic-like release possibly from parallel fibers that subsequently activated the glutamate ionotropic receptors/nitric oxide/cGMP pathway. Presynaptic 5-HT1D receptors could regulate the nitric oxide-evoked release of glutamate and subsequent cGMP production.  相似文献   
3.

Background

Extracellular high mobility group box 1 (HMGB1) protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown.

Principal Findings

Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130–139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1(130–139) peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex.

Conclusion

We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.  相似文献   
4.
Although growing evidence suggests that extracellular ATP might play roles in the control of astrocyte/neuron crosstalk in the CNS by acting on P2X7 receptors, it is still unclear whether neuronal functions can be attributed to P2X7 receptors. In the present paper, we investigate the location, pharmacological profile, and function of P2X7 receptors on cerebrocortical nerve terminals freshly prepared from adult rats, by measuring glutamate release and calcium accumulation. The preparation chosen (purified synaptosomes) ensures negligible contamination of non-neuronal cells and allows exposure of 'nude' release-regulating pre-synaptic receptors. To confirm the results obtained, we also carried out specific experiments on human embryonic kidney 293 cells which had been stably transfected with rat P2X7 receptors. Together, our findings suggest that (i) P2X7 receptors are present in a subpopulation of adult rat cerebrocortical nerve terminals; (ii) P2X7 receptors are localized on glutamatergic nerve terminals; (iii) P2X7 receptors play a significant role in ATP-evoked glutamate efflux, which involves Ca2+-dependent vesicular release; and (iv) the P2X7 receptor itself constitutes a significant Ca2+-independent mode of exit for glutamate.  相似文献   
5.
Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2′-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system xc? transporter, a Nrf-2 target, was observed. Sulfasalazine, a system xc? transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.  相似文献   
6.
7.
8.
We previously observed that activation of presynaptic P2X7 receptors located on rat cerebrocortical nerve terminals induced the release of glutamate through different modes: the channel conformation allowing Ca(2+) entry triggered exocytotic release, while the receptor itself functioned as a permeation pathway for the non-exocytotic glutamate release. Considering that exocytotic and non-exocytotic glutamate release evoked by the activation of P2X7 receptors might play a role in the control of glutamatergic synapses, we investigated whether calmidazolium (which has been found to inhibit small cation currents through recombinant P2X7 receptors, but not organic molecule permeation) could distinguish between P2X7-related exocytotic and non-exocytotic modes of glutamate release. We found that calmidazolium inhibited the intrasynaptosomal Ca(2+) response to P2X7 receptor activation and the Ca(2+)-dependent exocytotic glutamate release from rat cerebrocortical nerve terminals, but was ineffective against the Ca(2+)-independent glutamate release. The P2X7 competitive antagonist A-438079 eliminated both exocytotic and non-exocytotic P2X7 receptor-evoked glutamate release. Selective inhibition of exocytotic glutamate release indicates that calmidazolium inhibits events dependent on the function of native rat P2X7 receptors as Ca(2+) channels, and suggests that it can be used as a tool to dissociate P2X7-evoked exocytotic from non-exocytotic glutamate release.  相似文献   
9.
10.
We have compared the effect of two distinct Ih inhibitors on the temporal properties of the ERG response that, as previously shown, correlates well with the HCN activation in rods. The present results confirm the notion that cilobradine is more effective than zatebradine in inducing bradycardia. Importantly, the doses of cilobradine that reduce the heart rate to values comparable to, or lower than, those obtained with higher doses of zatebradine have little effect on the frequency response of the ERG. While more potent than zatebradine in its bradycardic action, cilobradine appears comparatively less effective on the visual response. A possible explanation is that the affinity of cilobradine for the HCN channels in the heart is higher than that for the HCN channels of retinal neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号