首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   1篇
  2018年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Protease C1, an enzyme from soybean (Glycine max [L.] Merrill cv Amsoy 71) seedling cotyledons, was previously determined to be the enzyme responsible for the initial degradation of the alpha' and alpha subunits, but not the beta subunit, of beta-conglycinin storage protein. The sizes of the proteolytic products generated by the action of protease C1 suggest that the cleavage sites on the alpha' and alpha subunits of beta-conglycinin may be located in their N-terminal domain, which is not found in the beta subunit of beta-conglycinin. To check this hypothesis, storage proteins from other plant species that are homologous to either the alpha'/alpha or the beta subunit of beta-conglycinin were tested as substrates. As expected, the convicilin from pea (Pisum sativum), a protein homologous to the alpha' and alpha subunits of beta-conglycinin, was digested by protease C1. The vicilins from pea as well as vicilins from adzuki bean (Vigna angularis), garden bean (Phaseolus vulgaris), black-eyed pea (Vigna unguiculata), and mung bean (Vigna radiata), storage proteins that are homologous to the beta subunit of soybean beta-conglycinin, were not degraded by protease C1. Degradation of soybean beta-conglycinin involves a sequential attack of the alpha subunit at multiple sites, culminating in the formation of a stable intermediate of 53.5 kD and a final product of 48.0 kD. The cleavage sites resulting in this formation of the intermediates and final product were determined by N-terminal analysis. These were compared to the known amino acid sequences of the three beta-conglycinin subunits. Results showed these two polypeptides to be generated by proteolysis of the alpha subunit at regions bearing long strings of acidic amino acid residues.  相似文献   
2.
A newly developed nitrogen laser fluorimeter insensitive to actinic illumination was used to follow simultaneously the light induced changes in red and blue fluorescence of intact isolated spinach chloroplasts and leaf pieces. The recorded variable blue fluorescence was linked to a water soluble component of intact isolated chloroplasts, depended on Photosystem I, and was related to changes in carbon metabolism. From the comparison of changes in intact and broken chloroplasts and from fluorescence spectra under different conditions, it was concluded that the variation in NADPH was the major cause for the changes in blue fluorescence. This study opens a path towards continuous and non-destructive monitoring of NADPH redox state in chloroplasts and leaves.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - DLGA DL-glyceraldehyde - FNR ferredoxin-NADP reductase - FWHM full width at half maximum - LED light emitting diodes - OAA oxaloacetate - qN non-photochemical quenching - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - qP photochemical quenching - PPFD photosynthetic photon flux density - QA primary quinone acceptor of Photosystem II Preliminary results of this work were presented at the First Conference on the Physiology and Biochemistry of high Mountain Plants, 2–3 July 1992, Villar d'Arene, France.  相似文献   
3.
4.
Plasmacytoid dendritic cells (pDCs) recognize pathogen-associated molecules, particularly viral, and represent an important mechanism in innate defense. They may however, also have roles in steady-state tolerogenic responses at mucosal sites. pDCs can be isolated from blood, mucosa, and lymph nodes (LNs). Although pDCs can express peripherally derived Ags in LNs and at mucosal sites, it is not clear whether pDCs actually migrate from the periphery in lymph or whether LN pDCs acquire Ags by other mechanisms. To determine whether pDCs migrate in lymph, intestine or liver-draining LNs were removed and thoracic duct leukocytes (TDLs) were collected. TDLs expressing MHC-II and CD45R, but not TCRalphabeta or CD45RA, were then analyzed. These enriched TDLs neither transcribe type I IFNs nor secrete inflammatory cytokines in response to viral stimuli in vitro or after a TLR7/8 stimulus in vivo. In addition, these TDLs do not express CD5, CD90, CD200, or Siglec-H, but do express Ig, and therefore represent B cells, despite their lack of CD45RA expression. Intestinal and hepatic lymph are hence devoid of bona fide pDCs under both steady-state conditions and after TLR7/8 stimulation. This shows that any role for pDCs in Ag-specific T cell activation or tolerance must differ from the roles of classical dendritic cells, because it cannot result from peripheral Ag capture, followed by migration of pDCs via lymph to the LN.  相似文献   
5.
Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5-6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues.  相似文献   
6.
Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence (\(F_{0}^{\prime }\)) more than RR light. This extra reduction of the \(F_{0}^{\prime }\) was stronger than theoretically predicted for \(F_{0}^{\prime }\) quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra \(F_{0}^{\prime }\) reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and qP to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in qP but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of \(F_{0}^{\prime }\) and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.  相似文献   
7.
Sleep and Biological Rhythms -  相似文献   
8.
In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance.  相似文献   
9.
The Netherlands is "well known" for its nitrogen problems; it has one of the highest reactive nitrogen (Nr) emission densities in the world. It is a small country at the delta of several large European rivers. Ever since the industrial revolution, there has been a growing excess of nutrients and related emissions into the atmosphere (ammonia, nitrogen oxides and nitrous oxide) and into groundwater and surface water (nitrate), leading to a large range of cascading environmental impacts. Vehicular traffic, sewage and animal husbandry are the main sources of oxidized and reduced forms of Nr. This paper provides an overview of the origin and fate of nitrogen in the Netherlands, the various reported impacts of nitrogen, the Dutch and European policies to reduce nitrogen emissions and related impacts. In addition, ways are presented to go forward to potentially solve the problems in a European perspective. Solutions include the improvement of nitrogen efficiencies in different systems, technological options and education.  相似文献   
10.
The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F 0 and F M, respectively) and at the end of each light step ( $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ , respectively). Calculated $ F^{\prime}_{0} $ values derived from F 0, F M and $ F^{\prime}_{\text{M}} $ fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured $ F^{\prime}_{0} $ values. Based on the concept that calculated $ F^{\prime}_{0} $ values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured $ F^{\prime}_{0} $ . This method yields fluorometer-specific PSI data as its input data (F 0, F M, $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ ) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F 0 fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F 0 ? 1/F M, up to 50 % in A. thaliana and up to 400 % in Z. mays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号