首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2047篇
  免费   234篇
  2021年   33篇
  2020年   19篇
  2019年   20篇
  2018年   37篇
  2017年   26篇
  2016年   42篇
  2015年   95篇
  2014年   88篇
  2013年   112篇
  2012年   136篇
  2011年   116篇
  2010年   70篇
  2009年   83篇
  2008年   91篇
  2007年   98篇
  2006年   81篇
  2005年   93篇
  2004年   70篇
  2003年   60篇
  2002年   76篇
  2001年   26篇
  2000年   27篇
  1999年   25篇
  1998年   20篇
  1996年   24篇
  1995年   14篇
  1994年   18篇
  1993年   17篇
  1992年   28篇
  1991年   28篇
  1990年   24篇
  1989年   20篇
  1988年   20篇
  1987年   26篇
  1986年   21篇
  1985年   27篇
  1984年   30篇
  1983年   19篇
  1982年   17篇
  1981年   23篇
  1980年   13篇
  1978年   18篇
  1977年   19篇
  1976年   25篇
  1975年   18篇
  1974年   18篇
  1973年   18篇
  1972年   13篇
  1971年   15篇
  1968年   13篇
排序方式: 共有2281条查询结果,搜索用时 203 毫秒
1.
2.
The dominant cecal bacteria in the high-arctic Svalbard reindeer were characterized, their population densities were estimated, and cecal pH was determined in summer, when food quality and availability is good, and in winter, when it is very poor. In summer the total culturable viable bacterial population was (8.9 +/- 5.3) X 10(8) cells ml-1, whereas in winter it was (1.5 +/- 0.7) X 10(8) cells ml-1, representing a decrease to 17% of the summer population density. Of the dominant species of cultured bacteria, Butyrivibrio fibrisolvens represented 23% in summer and 18% in winter. Streptococcus bovis represented 17% in summer and 5% in winter. Bacteroides ruminicola represented 10% in summer and 26% in winter. In summer and winter, respectively, the proportion of the viable population showing the following activities was as follows: fiber digestion, 36 and 48%; cellulolysis, 10 and 6%; xylanolysis, 33 and 48%; and starch utilization, 77 and 71%. The most abundant cellulolytic species in summer was Butyrivibrio fibrisolvens, representing 62% of the total cellulolytic population, and in winter it was Ruminococcus albus, representing 80% of the total cellulolytic population. The most abundant xylanolytic species in summer was Butyrivibrio fibrisolvens, and in winter it was Bacteroides ruminicola, representing 59 and 54% of the xylanolytic isolates in summer and winter, respectively. The cecal bacterial of the Svalbard reindeer have the ability to digest starch and the major structural carbohydrates of the diet that are not digested in the rumen. The cecum in these animals has the potential to contribute very substantially to the digestion of the available plant material in both summer and winter.  相似文献   
3.
Enterochelin synthetase activity is controlled by both repression and feed-back inhibition mechanisms. Inclusion of iron in growth media results in synthesis of all four (D, E, F and G) components of enterochelin synthetase being repressed. The specific inhibition of L-serine activation (partial reaction catalyzed by the F component) by the end products, ferric-enterochelin and 2,3-dihydroxybenzoylserine, is shown to inhibit overall enterochelin synthetase activity.  相似文献   
4.
We previously reported that aged mice lacking complement factor H (CFH) exhibit visual defects and structural changes in the retina. However, it is not known whether this phenotype is age-related or is the consequence of disturbed development. To address this question we investigated the effect of Cfh gene deletion on the retinal phenotype of young and mid-age mice. Cfh −/− mouse eyes exhibited thickening of the retina and reduced nuclear density, but relatively normal scotopic and photopic electroretinograms. At 12 months there was evidence of subtle astroglial activation in the Cfh −/− eyes, and significant elevation of the complement regulator, decay-accelerating factor (DAF) in Müller cells. In the retinal pigment epithelium (RPE) of young control and Cfh −/− animals mitochondria and melanosomes were oriented basally and apically respectively, whereas the apical positioning of melanosomes was significantly perturbed in the mid-age Cfh −/− RPE. We conclude that deletion of Cfh in the mouse leads to defects in the retina that precede any marked loss of visual function, but which become progressively more marked as the animals age. These observations are consistent with a lifelong role for CFH in retinal homeostasis.  相似文献   
5.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
6.
7.
The melanogenic actions of the melanocortins are mediated by the melanocortin‐1 receptor (MC1R). MC1R is a member of the G‐protein‐coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or α‐melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist‐independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.  相似文献   
8.
The dominant rumen bacteria in high-arctic Svalbard reindeer were characterized, their population densities were estimated, and ruminal pH was determined in summer, when food quality and availability are good, and in winter, when they are poor. In summer the total cultured viable population density was (2.09 +/- 1.26) X 10(10) cells ml-1, whereas in winter it was (0.36 +/- 0.29) X 10(10) cells ml-1, representing a decrease to 17% of the summer population density. On culture, Butyrivibrio fibrisolvens represented 22% of the bacterial population in summer and 30% in winter. Streptococcus bovis represented 17% of the bacterial population in summer but only 4% in winter. Methanogenic bacteria were present at 10(4) cells ml-1 in summer and 10(7) cells ml-1 in winter. In summer and winter, respectively, the proportions of the viable population showing the following activities were as follows: starch utilization, 68 and 63%; fiber digestion, 31 and 74%; cellulolysis, 15 and 35%; xylanolysis, 30 and 58%; proteolysis, 51 and 28%; ureolysis, 40 and 54%; and lactate utilization, 13 and 4%. The principal cellulolytic bacterium was B. fibrisolvens, which represented 66 and 52% of the cellulolytic population in summer and winter, respectively. The results indicate that the microflora of the rumen of Svalbard reindeer is highly effective in fiber digestion and nitrogen metabolism, allowing the animals to survive under the austere nutritional conditions typical of their high-arctic habitat.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号