首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   8篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   12篇
  1978年   12篇
  1977年   5篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
Unusual tubular structures have been observed in rat aortic smooth muscle cells (SMC) grown in culture. These tubular structures have several characteristics that strongly suggest that they are lysosomes: they are bounded by a single membrane bilayer, contain densely staining material, and acid phosphatase activity. Furthermore, these structures are present in living cells, as demonstrated by their ability to accumulate the membrane-impermeable fluorescent dye lucifer yellow CH. In ultrastructural preparations they are best seen in samples that are cryofixed by rapid freezing and then freeze-substituted in osmium-acetone solutions. Conventional chemical fixation did not appear to preserve these structures to as great an extent as did rapid freezing. Comparison of SMC in vitro to the same cells in situ revealed differences in lysosome number as well as morphological appearance. Thus, the culturing of rat SMC leads to the formation of unusual tubular lysosomes whose ultrastructural appearance is particularly sensitive to the methods employed for examination.  相似文献   
2.
Binding and internalization of heparin by vascular smooth muscle cells   总被引:13,自引:0,他引:13  
Previous work from our laboratory has demonstrated that heparin specifically inhibits the proliferation of vascular smooth muscle cells in vivo and in vitro. In this paper, we examine the binding and mode of internalization of heparin by smooth muscle cells. For these studies, radiolabeled and fluoresceinated (FITC) heparin probes were synthesized that retained their antiproliferative capacity. Binding of 3H-heparin to these cells occurs via specific, high-affinity binding sites (Kd = 10(-9) M, 100,000 binding sites per cell). Approximately 80% of the heparin bound to the cell surface was shed into the culture medium within 2 hr. The heparin that was left on the cell surface was internalized with biphasic kinetics. Approximately 50% of the bound material was internalized within 2 hr. After this initial rapid uptake, the rate slowed substantially, with the remaining heparin requiring 1-2 days to be internalized. Binding and uptake of FITC heparin was monitored using video image intensification fluorescence microscopy. When smooth muscle cells were exposed to FITC heparin at 4 degrees C, a diffuse surface staining pattern was observed. After warming the cells to 37 degrees C, intensely fluorescent vesicles were seen superimposed over the diffuse surface staining within 2 min. After 15 min at 37 degrees C, numerous large punctate vesicles were seen inside the cell. After 2 hr these vesicles had concentrated in the perinuclear region. This pattern of uptake, when considered along with the presence of specific, high-affinity binding sites and the initial rapid uptake of 3H-heparin, suggests that heparin enters smooth muscle cells by both receptor-mediated and other endocytic pathways.  相似文献   
3.
4.
5.
6.
The glycosaminoglycan heparin inhibits the growth of several cell types in vitro including smooth muscle cells and rat cervical epithelial cells. The commercially available heparin which has antiproliferative activity is a structurally heterogeneous polymer that undergoes extensive modifications during maturation. In this report we have performed structure-function studies on heparin's antiproliferative activity using three different cell types: both rat and calf vascular aortic smooth muscle cells and rat cervical epithelial cells. The minimal oligosaccharide size requirements for antiproliferative activity were determined for the three cell types by using oligosaccharide fragments of defined length prepared by nitrous acid cleavage and gel filtration and a synthetic pentasaccharide. The size requirements are similar but not identical for the different cell types. Hexasaccharide fragments are antiproliferative for all three cell types but the synthetic pentasaccharide inhibits the growth of only the rat and calf vascular aortic smooth muscle cells. The interdependence between size and charge for antiproliferative activity was investigated using chemically modified oligosaccharides as well as oligosaccharides prepared from heparin and separated into fractions of differing charge by ion-exchange chromatography. There is a strong interdependence between size and charge for antiproliferative activity. For example, increasing the charge of inactive tetrasaccharide fragments by O-oversulfation makes them antiproliferative whereas reducing the charge of active larger fragments causes them to loose their antiproliferative activity. Finally the importance of 2-O-sulfate glucuronic acid moieties for antiproliferative activity was investigated using heparin preparations that lack 2-O-sulfate glucuronic acid. These compounds possess antiproliferative activity indicating that 2-O-sulfate glucuronic acid is not required for antiproliferative activity.  相似文献   
7.
8.
9.
10.
A wide variety of animal cells have been successfully permeabilized to non-penetrating molecules, using lysolecithin. The sizes of molecules that can enter the cells can be controlled by varying the concentration of lysolecithin. The cells become permeable to small molecules and maintain viability following treatment with low lysolecithin concentrations. At higher concentrations the cells become permeable to proteins but do not retain viability. Lysolecithin permeabilization should permit many studies of the effects of non-penetrating compounds on cellular processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号