首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   31篇
  2021年   2篇
  2020年   3篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   2篇
  1963年   2篇
  1959年   2篇
  1955年   1篇
  1940年   1篇
  1931年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
1.
2.
We report the changes in the concentrations and 18O contents of extracellular CO2 and HCO3 in suspensions of Synechococcus sp. (UTEX 2380) using membrane inlet mass spectrometry. This marine cyanobacterium is known to have an active uptake mechanism for inorganic carbon. Measuring 18O exchange between CO2 and water, we have found the intracellular carbonic anhydrase activity to be equivalent to 20 times the uncatalyzed CO2 hydration rate in different samples of cells that were grown on bubbled air (low-CO2 conditions). This activity was only weakly inhibited by ethoxzolamide with an I50 near 7 to 10 micromolar in lysed cell suspensions. We have shown that even with CO2-starved cells there is considerable generation of CO2 from intracellular stores, a factor that can cause errors in measurement of net CO2 uptake unless accounted for. It was demonstrated that use of 13C-labeled inorganic carbon outside the cell can correct for such errors in mass spectrometric measurement. Oxygen-18 depletion experiments show that in the light, CO2 readily passes across the cell membrane to the sites of intracellular carbonic anhydrase. Although HCO3 was readily taken up by the cells, these experiments shown that there is no significant efflux of HCO3 from Synechococcus.  相似文献   
3.
Heterocyst-free (NH4+-grown) cultures of the cyanobacterium Anabaena variabilis produce a hydrogenase which is reversibly inhibited by light and O2. White or red light at an intensity of 5,000 lx inhibited greater than 95% of the activity. Oxygen at concentrations as low as 0.5% inhibited more than 85% of the hydrogenase in the vegetative cells of CO2-NH4+-grown cultures. The vegatative cell hydrogenase is also sensitive to strong oxidants like ferricyanide. In the presence of strong reductants like S2O4(2-), hydrogenase activity was not inhibited by light. However, hydrogenase activity in the heterocysts was insensitive to both light (greater than 5,000 lx) and O2 (10%). Heterocysts and light-insensitive hydrogenase activity appear simultaneously during differentiation of the vegetative cells into heterocysts (an NH4+-grown culture transferred to NH4+-free, N2-containing medium). This light-insensitive hydrogenase activity was detected several hours before the induction of nitrogenase activity. These results suggest a mode of regulation of hydrogenase in the vegetative cells of A. variabilis that is similar to "redox control" of hydrogenase and other "anaerobic" proteins in enteric bacteria like Escherichia coli.  相似文献   
4.
5.
Spiller H 《Plant physiology》1980,66(3):446-450
Spheroplasts from Anabaena 7119 (formerly designated Nostoc muscorum) were prepared in the presence of serum albumin in 0.5 molar sucrose. Electron transport and photophosphorylation were preserved (> 70% of the maximum rate for 1 week). The pH profile of electron transport and photophosphorylation in the reactions H2O → NADP, H2O → methyl viologen, and H2O → ferricyanide shows that uncoupling by ammonia is small throughout and increases slightly with higher pH. ADP + Pi increased NADP reduction from H2O by 2.5-fold. The ratios of ATP formed per electron pair transported ranged from 0.9 to 1.5. Effects of catalase and superoxide dismutase on the overall O2 balance implicate pseudocyclic electron transport and phosphorylation. The quenching of 9-aminoacridine fluorescence indicates the formation of a Δ pH from 2 to 2.6 during illumination. This pH gradient is abolished by uncouplers; however, complete uncoupling is achieved only by 3-chlorocarbonyl cyanide phenylhydrazone or valinomycin + NH4+. In the presence of NH4+ alone, the membrane potential may act as the driving force for photophosphorylation.  相似文献   
6.
High resolution x-ray lithographic studies of cells from chick embryo hearts dried by the CO2 critical point method have been made with soft x-ray radiation of different wavelengths. A marked difference in the relief replica in polymethyl methacrylate (PMMA) resulting from the differential absorption by the dried cells of carbon K alpha radiation at 4.48 nm and broad band synchrotron radiation (SR) with lambda is greater than 1.5 nm demonstrates the potential usefulness of the technique in making high resolution (approximately or equal to 10 nm) chemical identification of the constitutents which make up the various parts of the cell.  相似文献   
7.
Summary The occurrence of heterotrophic nitrification in nitrogen-starved cells of Ankistrodesmus braunii was confirmed. The levels of nitrate and nitrite were measured over a period of four weeks. The validity of quantitative determinations in the presence of highly active nitrate and nitrite reductases is discussed. Whereas free hydroxylamine as an intermediate could not be detected, increased hydroxylamine oxidase activity was found in nitrogen-starved cultures. Nitrite reductase and hydroxylamine oxidase can be assigned to particles by sucrose density gradient centrifugation. The possible involvement of microbodies, which were found to be present in Ankistrodesmus, in metabolic processes during nitrogen starvation is discussed.Abbreviations NR nitrate reductase - NiR nitrite reductase - NNEDA N-(1-naphthyl)ethylenediaminedihydrochloride - DCPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - TCA trichloroacetic acid - DAB 3,3-diaminobenzidine - AT 3-amino-1H-1,2,4-triazole - AMP 2-amino-2-methyl-1,3-propanediol  相似文献   
8.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.  相似文献   
9.
Evidence was recently reported that the cysteine proteinase inhibitor, cystatin C, is highly expressed by cultured human retinal pigment epithelial (RPE) cells. As a step towards understanding possible functions of this protein associated with the RPE, the localization, targetting and trafficking of cystatin C were investigated. Constructs encoding an enhanced variant of green fluorescent protein (EGFP) fused to precursor cystatin C and to mature cystatin C were made and transfected into cultured human RPE cells. Expression of fusion proteins was monitored in vivo by fluorescence confocal microscopy. In cells transfected with precursor cystatin C-EGFP, fluorescence was initially targetted to the perinuclear zone, co-localizing with the Golgi apparatus. Transfected cells were observed at intervals over a period of up to 3 weeks, during which time fluorescent vesicles developed peripherally and basally while fluorescence continued to be detected in the Golgi region. Immunochemical analysis of cell lysates confirmed the expression of a fusion protein recognized by antibodies to both cystatin C and EGFP. Cells transfected with the construct lacking the leader peptide of precursor cystatin C presented a diffuse and weak fluorescence. Together, these results imply a leader sequence-dependent processing of cystatin C through the secretory pathway of RPE cells. This was confirmed by the detection, by Western blotting, of the chimaeric protein alongside endogenous cystatin C in the medium of transfected RPE cells.  相似文献   
10.
Evidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号