首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   29篇
  2021年   8篇
  2018年   2篇
  2016年   3篇
  2015年   8篇
  2014年   15篇
  2013年   18篇
  2012年   18篇
  2011年   22篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   21篇
  2006年   15篇
  2005年   8篇
  2004年   18篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   17篇
  1998年   4篇
  1997年   4篇
  1995年   3篇
  1994年   7篇
  1992年   2篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   14篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1978年   3篇
  1974年   4篇
  1971年   1篇
  1968年   2篇
  1965年   2篇
  1957年   1篇
  1953年   1篇
  1951年   1篇
  1950年   2篇
  1948年   1篇
  1934年   1篇
  1920年   2篇
  1915年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
1.
2.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   
3.
The addition of L-serine to inositol-containing growth medium repressed membrane-associated CDPdiacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) and phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activities and subunit levels in wild-type Saccharomyces cerevisiae. Enzyme activities and subunit levels were not repressed when inositol was absent from the growth medium. The addition of L-serine to the growth medium did not affect the phospholipid composition of wild-type cells. CDPdiacylglycerol synthase and phosphatidylserine synthase were not regulated in the S. cerevisiae inositol biosynthesis ino2, ino4, and opi1 regulatory mutants, suggesting that regulation by inositol plus L-serine is coupled to inositol synthesis. Inositol and L-serine did not affect the activities of purified CDPdiacylglycerol synthase and phosphatidylserine synthase. The addition of compounds structurally related to L-serine to the growth medium of wild-type cells also resulted in a repression of CDPdiacylglycerol synthase and phosphatidylserine synthase but only in the presence of inositol. Phosphatidylinositol synthase (CDPdiacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was not regulated by inositol plus L-serine.  相似文献   
4.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   
5.
To precisely define the functional sequence of the CHO1 gene from Saccharomyces cerevisiae, encoding the regulated membrane-associated enzyme phosphatidylserine synthase (PSS), we subcloned the original 4.5-kilobase (kb) CHO1 clone. In this report a 2.8-kb subclone was shown to complement the ethanolamine-choline auxotrophy and to repair the defect in the synthesis of phosphatidylserine, both of which are characteristic of cho1 mutants. When this subclone was used as a hybridization probe of Northern and slot blots of RNA from wild-type cells, the abundance of a 1.2-kb RNA changed in response to alterations in the levels of the soluble phospholipid precursors inositol and choline. The addition of inositol led to a 40% repression of the 1.2-kb RNA level, while the addition of choline and inositol led to an 85% repression. Choline alone had little repressive effect. The level of 1.2-kb RNA closely paralleled the level of PSS activity found in the same cells as determined by enzyme assays. Disruption of the CHO1 gene resulted in the simultaneous disappearance of 1.2-kb RNA and PSS activity. Cells bearing the ino2 or ino4 regulatory mutations, which exhibit constitutively repressed levels of a number of phospholipid biosynthetic enzymes, had constitutively repressed levels of 1.2-kb RNA and PSS activity. Another regulatory mutation, opi1, which causes the constitutive derepression of PSS and other phospholipid biosynthetic enzymes, caused the constitutive derepression of the 1.2-kb RNA. When cho1 mutant cells were transformed with the 2.8-kb subclone on a single-copy plasmid, the 1.2-kb RNA and PSS activity levels were regulated in a wild-type fashion. The presence of the 2.8-kb subclone on a multicopy plasmid, however, led to the constitutive overproduction of 1.2-kb RNA and PSS in cho1 cells.  相似文献   
6.
The lipid-linked precursor ofN-type glycoprotein oligosaccharides was isolated from porcine thyroid microsomes after in cubation with UDP[3H] Glucose. The carbohydrate was released from dolichol pyrophosphate by mild acid hydrolysis, purified by gel filtration and characterized by 500-MHz1H-NMR spectroscopy in combination with enzymatic degradation. The parent oligosaccharide was found to be Glc3Man9Glc-NAc2. The three glucose residues are present in the linear sequence Glcα1-2Glα1-3 Glc, the latter being α(1-3)-linked to one of the mannose residues. In order to establish the branch location of the triglucosyl unit, the parent compound was digested with jack-bean α-mannosidase. The oligosaccharide product was purified by gel filtration, and identified by1H-NMR as Glc3Man5GlcNAc2 lacking the mannose residues A, D2, B and D3. Therefore, the structure of the precursor oligosaccharide is as follows: $$\begin{gathered} c b a D_1 C 4 \hfill \\ Glc\alpha 1 - 2Glc\alpha 1 - 3Glc\alpha 1 - 3Man\alpha 1 - 2Man\alpha 1 - 2Man\alpha 1 \hfill \\ 3 \swarrow 3 2 1 \hfill \\ Man\alpha 1 - 2Man\alpha 1 Man\beta 1 - 4GlcNAc\beta 1 - 4GlcNAc \hfill \\ D_{2 } A 3 6 \hfill \\ Man\alpha 1 \hfill \\ 6 \hfill \\ Man\alpha 1 - 2Man\alpha 1 \nwarrow 4 \hfill \\ D_3 B \hfill \\ \end{gathered} $$   相似文献   
7.
In late spring of 1986, 10 of 23 Dall's sheep (Ovis dalli dalli) at the Metropolitan Toronto Zoo were moved to a new exhibit, where all developed severe respiratory signs refractory to anthelmintic and antibiotic therapy. In July, two animals died with chronic active bronch-pneumonia, and a third was euthanized because of pneumonia several months later. Bacteria were not isolated from the lungs of the first, steptococci and Pasteurella hemolytica were isolated from the other two, respectively; Mycoplasma ovipneumoniae was isolated from both. Pulmonary lesions in all three sheep were consistent with Mycoplasma sp. infection. Nasal swabs of the remaining animals yielded no consistent bacterial isolates; however, four of eight sheep were positive for M. ovipneumoniae. Viral cultures yielded an as yet unidentified herpesvirus. Sheep in the original and new herds had no serologic titers to parainfluenza-3, equine viral rhinopneumonitis, or infectious bovine rhinotracheitis, and had variable titers against bovine respiratory syncytial virus. No titers against M. ovipneumoniae were present in 13 sheep still in the original exhibit, but titers varied from 1:32 to 1:256 in eight pneumonic sheep. Sera taken from three sheep before or early in the outbreak were all negative for antibody to M. ovipneumoniae. Two of the affected Dall's sheep had been in contact with domestic sheep in the winter of 1985-1986, and M. ovipneumoniae was subsequently cultured from the domestic flock. Exposure to a new pathogen, and environmental and social stress in a new exhibit may have resulted in this severe disease in Dall's sheep.  相似文献   
8.
Somatic embryo (embryoid) formation from immature-embryo-derived calli was quantified in replicated experiments involving 10Triticum aestivum L. genotypes. Several published media formulations, which had previously been optimized for wheat tissue culture, were tested for each genotype. Embryos from each plant were randomly assigned to each medium. Percentage precocious germination of immature embryos and mean percentage scutellar callus per explant were recorded. Embryoids per callus were determined by microscopic examination at 28 and 56 days. There were highly significant differences among genotypes, media, and individual plants from which explants were taken. A medium based on double the Murashige and Skoog (MS) inorganic salt concentration was significantly better than other media. Inclusion of all MS vitamins appeared essential for optimal response. Two genotypes were tested in a second experiment where both 3,6-dichloro-o-anisic acid (9.05 M) and 6-furfurylaminopurine (0.46 M) were substituted for 2,4-dichlorophenoxyacetic acid (4.52 M) in either double or normal MS medium. This substitution significantly increased embryoid formation at 28 days. Additions of either 6-furfurylaminopurine or coconut water increased precocious germination of both embryo explants and embryoids.This study was supported in part by NASA-Ames Cooperative Agreement No. NCC2-139. Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3358.  相似文献   
9.
The addition of inositol to the growth medium of Saccharomyces cerevisiae resulted in rapid changes in the rates of phospholipid biosynthesis. The partitioning of the phospholipid intermediate CDP-diacylglycerol was shifted to phosphatidylinositol at the expense of phosphatidylserine and its derivatives phosphatidylethanolamine and phosphatidylcholine. Serine at 133-fold greater concentrations than that of inositol shifted the partitioning of CDP-diacylglycerol to phosphatidylserine at the expense of phosphatidylinositol but to a much lesser degree. Kinetic experiments with pure phosphatidylserine synthase and phosphatidylinositol synthase indicated that the partitioning of CDP-diacylglycerol between phosphatidylserine and phosphatidylinositol was not governed by the affinities both enzymes have for their common substrate CDP-diacylglycerol. Instead, the main regulation of phosphatidylinositol and phosphatidylserine synthesis was through the exogenous supply of inositol. The Km of inositol (0.21 mM) for phosphatidylinositol synthase was 9-fold higher than cytosolic concentration of inositol (24 microM). The Km of serine (0.83 mM) for phosphatidylserine synthase was 3-fold below the cytosolic concentration of serine (2.6 mM). Therefore, inositol supplementation resulted in a dramatic increase in the rate of phosphatidylinositol synthesis, whereas serine supplementation resulted in little affect on the rate of phosphatidylserine synthesis. Inositol also contributed to the regulation of phosphatidylinositol and phosphatidylserine synthesis by having a direct affect on phosphatidylserine synthase activity. Kinetic experiments with pure phosphatidylserine synthase showed that inositol was a noncompetitive inhibitor of the enzyme with a Ki of 65 microM.  相似文献   
10.
The inducible water-soluble bioemulsifier liposan (M. C. Cirigliano and G. M. Carman, Appl. Environ. Microbiol. 48:747-750, 1984) was purified from the yeast Candida lipolytica. The purification procedure included repeated solvent extractions of a concentrated culture filtrate and Affi-Gel concanavalin A affinity chromatography. The procedure yielded a preparation containing a major band (Mr = 27,600) which stained for protein and carbohydrate upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Liposan is composed of approximately 83% carbohydrate and 17% protein. Acid and enzymatic digestions of the emulsifier revealed that the carbohydrate portion is a heteropolysaccharide consisting of glucose, galactose, galactosamine, and galacturonic acid. Liposan effected and stabilized oil-in-water emulsions with a variety of commercial vegetable oils. Emulsification and stabilization properties of liposan were compared to those of a number of commercial emulsifiers and stabilizers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号