首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   20篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   10篇
  2012年   14篇
  2011年   5篇
  2010年   15篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   10篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
1.
Recently, several authors evaluated the affinity between lipid bilayers or erythrocyte membranes by analyzing the deformation of cells or vesicles they brought into close contact using micromanipulators. In the present report, we extend this approach in a study of the adhesive properties of rough nucleated cells. Rat peritoneal macrophages were made to bind human red cells modified with glutaraldehyde or glutaraldehyde and polylysine. Conjugates were examined with electron microscopy, and photomicrographs were digitized for quantification of cell surface roughness in and out of adhesion areas. Also, macrophages were subjected to micropipette aspiration to find a relationship between apparent surface tension and area increase. Assuming that this increase was a direct consequence of a smoothing of the cell surface on the submicrometer scale, the actual affinity between macrophages and erythrocytes was estimated. The obtained values ranged between 8.4 X 10(-5) and 18.2 X 10(-5) J/m2. It is concluded that cell surface roughness may be an important parameter of cell adhesion and perhaps deformation. This is made amenable to experimental study by the present approach.  相似文献   
2.
The reaction of N3- with Co,Zn superoxide dismutase, a good analogue of the native Cu,Zn enzyme, was studied in the presence and absence of phosphate, which is known to perturb the spectroscopic properties of the cobalt chromophore in the Co,Zn enzyme. EPR, NMR, and optical titrations demonstrated the formation of different adducts for N3- depending on the presence of phosphate, at variance with results previously obtained with CN- [3]. This evidence indicates that the mechanism of anion binding to Cu,Zn superoxide dismutase cannot be described on the basis of data obtained with a single type of anions.  相似文献   
3.
Fluorescent probes are widely used to study cell structure and function. However, few reports were devoted to a quantitative analysis of the intracellular distribution of fluorescent markers. In the present work, we describe the topographical changes of surface and cytoskeletal markers on individual cells subjected to adhesive or mechanical interaction. Conjugates were prepared with a cytotoxic T-lymphocyte clone and target cells. Specific antigens, membrane phospholipids, surface glycoconjugates, and polymerized actin were labeled with fluorescent antibodies or biochemical probes. The analysis of fluorescence distributions in conjugates demonstrated a selective reorganization of the plasma membrane with a gathering of some molecular species in the intercellular adhesion area. Furthermore, individual phagocytic cells were sucked into glass micropipets, then stained with fluorescent phallacidin to analyze the effect of mechanical efforts on the cytoskeleton organization. The concentration of polymerized actin was found to be similar in mechanicallyinduced protrusions and whole cells. It is concluded that adhesive interactions may result in marked cell polarization and formation of membrane zones with a particular biochemical composition. The submembranar cytoskeleton might play a role in this process.  相似文献   
4.
We combined fluorescence labeling, digital image processing, and micromanipulation to investigate the intracellular events induced by inflicting a mechanical stress on rat basophilic leukemia cells. Our findings were as follows:
  1. Most cells displayed a localized calcium rise in response to micropipet aspiration. This represented an average threefold increase as compared to resting level, and it was observed during the first 10 s following aspiration. A slow return to initial level occurred within about 3 min. Further, this calcium rise involved a mobilization of intracellular stores, since it was not prevented by adding a calcium chelator into the extracellular medium.
  2. All micropipet-aspirated cells displayed a local accumulation of microfilaments, with a preferential localization in the cell protrusions or near the pipet tips.
  3. No absolute correlation was found between the localization of calcium rise and cytoskeletal accumulation.
  4. Cell deformability was decreased when intracellular calcium was maintained at a constant (high or low) level with ionomycin and/or EGTA.
It is concluded that cells have a general ability to respond to mechanical stimulation by a coordinated set of events. More parameters must be studied before the mechanisms of cell shape regulation are fully understood.  相似文献   
5.
An Ustilago maydis ergosterol biosynthesis mutant (A14) which is partially blocked in sterol 14alpha-demethylase (P45014DM) activity is described. This mutant accumulated the abnormal 14alpha-methyl sterols, eburicol, 14alpha-methylfecosterol, and obtusifoliol, along with significant amounts of ergosterol. Although the A14 mutant grew nearly as well as the wild type, it was impaired in cell extension growth, which indicated a dysfunction in apical cell wall synthesis. The mutant was also found to be hypersensitive to the azole fungicides penconazole and tebuconazole.  相似文献   
6.
1.  Aplysia californica incorporates toxins and pigments from its red seaweed diet into its body and ink, purportedly as a defense against predation. We tested ink's potential defensive function by assessing the survival of green seaweed-fed (red algal toxin deprived) snails in encounters with a natural predator, the sea anemone Anthopleura xanthogrammica.
2.  Red seaweed-fed Aplysia secreted copious amounts of ink when ensnared in anemone tentacles. A similar amount of ink applied to inkless (green-fed) snails as they were engulfed by an anemone enhanced their survival [71% survived (ink) vs 7% (seawater control)]. Ink caused anemones to reject whitefish (a familiar food) [50% rejected (ink) vs 10% (seawater control)], triggering gastrovascular eversions, which ejected ink as well as prey from their digestive cavities. Snails with only a passive chemical defense (algal toxins, no ink) escaped less often than snails with only an active chemical defense (ink, no red algal toxins) (20% survived vs 71%) and about as often as red algal toxin deprived snails (20% vs 12%). Snails avoided ink by chemical orientation, thus avoiding potential sites of ongoing predation.
3.  The survival value of ink and the snail's aversion to it supports ink's proposed anti-predator function.
  相似文献   
7.
8.
The adhesive properties of the mouse P388D1 macrophage-like line were explored. Cells were deposited in glass capillary tubes, and the kinetics of adhesion and spreading were studied. Binding involved the cell metabolism since it was decreased by cold, azide, or a divalent cation chelator. Glass-adherent cells were subjected to calibrated laminar shear flows with a highly viscous dextran solution. A tangential force of about 5 X 10(-3) dyn/cell was required to achieve substantial detachment. The duration of application of the shearing force strongly influenced cell-substrate separation when this was varied from 1-10 s. Further, this treatment resulted in marked cell deformation, with the appearance of an elongated shape. Hence, cell-substrate separation is a progressive process, and binding strength is expected to be influenced by cell deformability. The minimum time required for adhesion was also investigated by making cells adhere under flow conditions. The maximum flow rate compatible with adhesion was about 1000-fold lower than that required to detach glass-bound cells. A simple model was devised to provide a quantitative interpretation for the experimental results of kinetic studies. It is concluded that cell-to-glass adhesion required a cell-substrate contact longer than a few seconds. This first step of adhesion was rapidly followed by a large (about 1000-fold) increase of adhesion strength. It is therefore emphasized that adhesion is heavily dependent on the duration of cell-to-cell encounter, as well as the force used to remove so-called unbound cells.  相似文献   
9.
Hexazonium pararosaniline is a valuable reagent that has been used in enzyme activity histochemistry for 50 years. It is an aqueous solution containing the tris-diazonium ion derived from pararosaniline, an aminotriarylmethane dye, and it contains an excess of nitrous acid that was not consumed in the diazotization reaction. Other investigators have found that immersion for 2 min in an acidic (pH 3.5) 0.0015 M hexazonium pararosaniline solution can protect cryostat sections of unfixed animal tissues from the deleterious effects of aqueous reagents such as buffered solutions used in immunohistochemistry, while preserving specific affinities for antibodies. In the present investigation hexazonium pararosaniline protected lymphoid tissue and striated muscle against the damaging effects of water or saline. The same protection was conferred on unfixed sections treated with dilute nitrous or hydrochloric acid in concentrations similar to those in hexazonium pararosaniline solutions. Model tissues (solutions, gels or films containing gelatin and/or bovine albumin) responded predictably to well known cross-linking (formaldehyde) or coagulant (mercuric chloride) fixatives. Hexazonium pararosaniline solutions prevented the dissolution of protein gels in water only after 9 or more days of contact, during which time considerable swelling occurred. It is concluded that there is no evidence for a “fixative” action of hexazonium pararosaniline. The protective effect on frozen sections of unfixed tissue is attributable probably to the low pH of the solution.  相似文献   
10.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号