首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   11篇
  2024年   2篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1967年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
2.
3.
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef‐building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad‐scale climate‐related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.  相似文献   
4.
Understanding patterns in species richness and diversity over environmental gradients (such as altitude and depth) is an enduring component of ecology. As most biological communities feature few common and many rare species, quantifying the presence and abundance of rare species is a crucial requirement for analysis of these patterns. Coral reefs present specific challenges for data collection, with limitations on time and site accessibility making efficiency crucial. Many commonly used methods, such as line intercept transects (LIT), are poorly suited to questions requiring the detection of rare events or species. Here, an alternative method for surveying reef-building corals is presented; the point count transect (PCT). The PCT consists of a count of coral colonies at a series of sample stations, located at regular intervals along a transect. In contrast the LIT records the proportion of each species occurring under a transect tape of a given length. The same site was surveyed using PCT and LIT to compare species richness estimates between the methods. The total number of species increased faster per individual sampled and unit of time invested using PCT. Furthermore, 41 of the 44 additional species recorded by the PCT occurred ≤ 3 times, demonstrating the increased capacity of PCT to detect rare species. PCT provides a more accurate estimate of local-scale species richness than the LIT, and is an efficient alternative method for surveying reef corals to address questions associated with alpha-diversity, and rare or incidental events.  相似文献   
5.
Batesian mimicry evolves when the 'umbrella' of protection provided by resemblance to a conspicuous unpalatable model species is sufficient to overcome increased predation risk associated with greater conspicuousness. However, the shape and extent of this umbrella, that is, how the level of protection provided by mimicry changes with degree of resemblance between model and mimic, is poorly known. We investigated the response of wild predatory fishes to plastic replicas of a model-mimic species pair of tropical reef fishes, Canthigaster valentini (a toxic pufferfish, the model) and Paraluteres prionurus (the putative mimic), and additional replicas with progressively lower degrees of resemblance to the mimic species. Our results reveal a relatively broad region of protection, indicated by a reduced approach rate by piscivorous fishes, surrounding the colour pattern of the model species. Protection increased with increasing resemblance. By contrast, the response of non-piscivorous fishes was unrelated to degree of resemblance of replicas to the model. Our results suggest that piscivorous fishes on the reef are educated regarding the toxicity of C. valentini, and that avoidance of fish having the pufferfish colour pattern has generated selection favouring mimetic resemblance by the palatable P. prionurus. The relatively broad protective umbrella has probably facilitated the initial evolution of resemblance in the palatable prey species despite the potential hazards of greater conspicuousness.  相似文献   
6.
Vaccine vectors derived from Venezuelan equine encephalitis virus (VEE) that expressed simian immunodeficiency virus (SIV) immunogens were tested in rhesus macaques as part of the effort to design a safe and effective vaccine for human immunodeficiency virus. Immunization with VEE replicon particles induced both humoral and cellular immune responses. Four of four vaccinated animals were protected against disease for at least 16 months following intravenous challenge with a pathogenic SIV swarm, while two of four controls required euthanasia at 10 and 11 weeks. Vaccination reduced the mean peak viral load 100-fold. The plasma viral load was reduced to below the limit of detection (1,500 genome copies/ml) in one vaccinated animal between 6 and 16 weeks postchallenge and in another from week 6 through the last sampling time (40 weeks postchallenge). The extent of reduction in challenge virus replication was directly correlated with the strength of the immune response induced by the vectors, which suggests that vaccination was effective.  相似文献   
7.
Certain two-pore domain K(+) channels are plausible targets for volatile general anesthetics, yet little is known at the molecular level about how these simple agents cause channel activation. The first anesthetic-activated K(+) current I(K(An)) that was characterized was discovered in the mollusk Lymnaea stagnalis and is remarkable for both its sensitivity to general anesthetics and its stereoselective responses to anesthetic enantiomers (Franks, N. P., and Lieb, W. R. (1988) Nature 333, 662-664 and Franks, N. P., and Lieb, W. R. (1991) Science 254, 427-430). Here we report the molecular cloning of a two-pore domain K(+) channel LyTASK from L. stagnalis and show that, when expressed in HEK-293 cells, it displays the same biophysical characteristics as the anesthetic-activated K(+) current I(K(An)). Sequence analysis and functional properties show it to be a member of the TASK family of channels with approximately 47% identity at the amino acid level when compared with human TASK-1 and TASK-3. By using chimeric channel constructs and site-directed mutagenesis we have identified the specific amino acid 159 to be a critical determinant of anesthetic sensitivity, which, when mutated to alanine, essentially eliminates anesthetic activation in the human channels and greatly reduces activation in LyTASK. The L159A mutation in LyTASK disrupts the stereoselective response to isoflurane while having no effect on the pH sensitivity of the channel, suggesting this critical amino acid may form part of an anesthetic binding site.  相似文献   
8.
Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m(2)). The high prevalence of rare species (38% encountered only once), the low level of spatial overlap (81% found in only one locality) and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean) are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.  相似文献   
9.
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号