首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   8篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
2.
Tree squirrels (Tamiasciurus) are important selective agents on conifer reproductive strategies (Smith 1970, 1975). Although this is well established for wind-dispersed pines, the impact of tree squirrels on bird-dispersed pines has been largely ignored. I assessed the impact of tree squirrels on the allocation of reproductive energy in the bird-dispersed limber pine (Pinus flexilis) by comparing its cone and seed traits from three sites in the Rocky Mountains where tree squirrels (Tamiasciurus) are present to those from three mountain ranges in the Great Basin where tree squirrels are absent. As predicted, differences between the two regions in individual cone and seed traits are consistent with the hypothesis that tree squirrels are important selective agents on these traits. In the absence of tree squirrels, limber pine allocates more than twice as much energy to kernel compared with that invested in putative seed defenses (cone, resin, and seed coat) as does limber pine where tree squirrels are present. Such a large difference is particularly striking, because tree squirrels may have become extinct in the Great Basin in only the last 12,000 yr. Although many factors influence the allocation of energy to cones and seeds, no single factor other than the presence of tree squirrels is compatible with the large and consistent differences between limber pine in the Rocky Mountains and Great Basin. These results show that tree squirrels are an important constraint on the evolution of cone and seed traits that promote the dispersal of seeds by birds.  相似文献   
3.
4.
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast–endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.  相似文献   
5.
Divergent selection drives the adaptive radiation of crossbills   总被引:3,自引:0,他引:3  
Abstract Knowledge of how phenotype influences fitness is necessary if we are to understand the basis of natural selection and how natural selection contributes to adaptive radiations. Here I quantify selection on a wild population of red crossbills ( Loxia curvirostra complex) in the South Hills, Idaho. Bill depth is the target of selection and selection on bill depth is stabilizing. I then show how fitness is related to both bill depth and performance. I use these and previously published relationships to estimate a fitness surface for five species of red crossbills that are part of an ongoing adaptive radiation in western North America. The fitness surface for crossbills has distinct peaks and valleys, with each crossbill species residing on or very near the summits. This work strongly supports a key tenet of the ecological theory of adaptive radiations; namely, divergent selection for utilizing alternative resources is the ultimate cause of adaptive radiations.  相似文献   
6.
7.
The bill structures of different call types of red crossbills (Loxia curvirostra complex) in western North America usually approximate the predicted optima for foraging on single species of conifers. One clear exception is the call type in the South Hills, Idaho, that is coevolving in an evolutionary arms race with Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia). Although South Hills crossbills forage only on the cones of these lodgepole pines, their average bill depth is smaller than that predicted to be optimal. Because preliminary data showed that large-billed males were more likely to exhibit symptoms of ectoparasitic mite (Knemidokoptes jamaicensis) infestation, the goal of our study was to further quantify the incidence of mite infestation and determine whether selection by mites may have favored smaller-billed crossbills and thus driven crossbills away from the foraging optimum. We estimated annual survival of both infected and uninfected South Hills crossbills using program MARK, which allows for auxiliary variables such as bill size and sex to be included in survival analyses. Mite infestation depressed crossbill survival and, especially for males, caused directional selection against larger-billed individuals. Such selection may explain why South Hills crossbills have smaller bills than the optimum and why average bill size for males has decreased from 1998 to 2003. This selection may also explain why the degree of sexual size dimorphism has decreased by nearly 50% since 1998.  相似文献   
8.
Repeated patterns among biological communities suggest similar evolutionary and ecological forces are acting on the communities. Conversely, the lack of such patterns suggests that similar forces are absent or additional ones are present. Coevolution between a seed predator, the red crossbill (Loxia curvirostra complex), and lodgepole pine (Pinus contorta var. latifolia) exemplifies the ecological and evolutionary predictions for coevolving systems. In the absence of another seed predator and preemptive competitor (pine squirrels Tamiasciurus hudsonicus), natural selection by crossbills results in the evolution of larger cones with thicker distal scales, while relaxation of selection by squirrels results in the evolution of cones with more seeds and a greater ratio of seed mass to cone mass. However, in one range, the Little Rocky Mountains, distal scale thickness has diverged as expected but cone size has not. In these mountains seed predation by lodgepole pine cone borer moths (Eucosma recissoriana) was about 10 times greater than in other ranges lacking squirrels. We quantified moth predation and cone traits and found that moths select for smaller cones with fewer seeds. Thus, selection by moths in the Little Rocky Mountains counters both selection by crossbills for large cone size and relaxation of selection by squirrels favoring more seeds per cone and accounts for the relatively small and few-seeded cones in these mountains. It is also apparent that selection by crossbills changes seed defenses in a manner that favors seed predation by moths, whereas selection by squirrels likely reduces such predation. These results demonstrate the importance of considering the evolutionary consequences of community context in locally evolved (coevolved) traits and interactions.  相似文献   
9.
The raw material for evolution is variation. Consequently, identifying the factors that generate, maintain, and erode phenotypic and genetic variation in ecologically important traits within and among populations is important. Although persistent directional or stabilizing selection can deplete variation, spatial variation in conflicting directional selection can enhance variation. Here, we present evidence that phenotypic variation in limber pine (Pinus flexilis) cone structure is enhanced by conflicting selection pressures exerted by its mutualistic seed disperser (Clark's nutcracker Nucifraga columbiana) and an antagonistic seed predator (pine squirrel Tamiasciurus spp.). Phenotypic variation in cone structure was bimodal and about two times greater where both agents of selection co‐occurred than where one (the seed predator) was absent. Within the region where both agents of selection co‐occurred, bimodality in cone structure was pronounced where there appears to be a mosaic of habitats with some persistent habitats supporting only the seed disperser. These results indicate that conflicting selection stemming from spatial variation in community diversity can enhance phenotypic variation in ecologically important traits.  相似文献   
10.
Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide-reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time-effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95,000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome-wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号