首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   11篇
  国内免费   3篇
  2021年   2篇
  2018年   2篇
  2016年   1篇
  2015年   6篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
  1957年   3篇
  1956年   1篇
  1955年   3篇
  1954年   1篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有115条查询结果,搜索用时 171 毫秒
1.
2.
The effect of natural shading on photosynthetic capacity and chloroplast thylakoid membrane function was examined in soybean (Glycine max. cv Young) under field conditions using a randomized complete block design. Seedlings were thinned to 15 plants per square meter at 20 days after planting. Leaves destined to function in the shaded regions of the canopy were tagged during early expansion at 40 days after planting. To investigate the response of shaded leaves to an increase in available light, plants were removed from certain plots at 29 or 37 days after tagging to reduce the population from 15 to three plants per square meter and alter the irradiance and spectral quality of light. During the transition from a sun to a shade environment, maximum photosynthesis and chloroplast electron transport of control leaves decreased by two- to threefold over a period of 40 days followed by rapid senescence and abscission. Senescence and abscission of tagged leaves were delayed by more than 4 weeks in plots where plant populations were reduced to three plants per square meter. Maximum photosynthesis and chloroplast electron transport activity were stabilized or elevated in response to increased light when plant populations were reduced from 15 to three plants per square meter. Several chloroplast thylakoid membrane components were affected by light environment. Cytochrome f and coupling factor protein decreased by 40% and 80%, respectively, as control leaves became shaded and then increased when shaded leaves acclimated to high light. The concentrations of photosystem I (PSI) and photosystem II (PSII) reaction centers were not affected by light environment or leaf age in field grown plants, resulting in a constant PSII/PSI ratio of 1.6 ± 0.3. Analysis of the chlorophyll-protein composition revealed a shift in chlorophyll from PSI to PSII as leaves became shaded and a reversal of this process when shaded leaves were provided with increased light. These results were in contrast to those of soybeans grown in a growth chamber where the PSII/PSI ratio as well as cytochrome f and coupling factor protein levels were dependent on growth irradiance. To summarize, light environment regulated both the photosynthetic characteristics and the timing of senescence in soybean leaves grown under field conditions.  相似文献   
3.
Ultraviolet absorption (UV) and circular dichroism (CD) spectra of wheat germ 5S RNA, when compared to tRNAPhe, indicate a largely base-paired and base-stacked helical structure, containing up to 36 base pairs. Fourier-transform infrared (FT-IR) spectra of tRNAPhe and wheat germ ribosomal 5S RNA have been acquired at 30 and 90 degrees C. From the difference of the FT-IR spectra between 90 and 30 degrees C, the number of base pairs in both RNAs was determined by modification of a previously published procedure [Burkey, K. O., Marshall, A. G., & Alben, J. O. (1983) Biochemistry 22, 4223-4229]. The base-pair composition and total base-pair number from FT-IR data are now consistent for the first time with optical (UV, CD, Raman) and NMR results for ribosomal 5S RNA. Without added Mg2+, tRNAPhe gave 18 +/- 2 base pairs [7 A-U and 11 G-C], in good agreement with the number of secondary base pairs from X-ray crystallography [8 A-U, 12 G-C, and 1 G-U]. Within the 10% precision of the FT-IR method, wheat germ 5S RNA exhibits essentially the same number of base pairs [14 A-U, 17 G-C, and 5 G-U; for a total of 36] in the absence of Mg2+ as in the presence of Mg2+ [14 A-U, 18 G-C, and 3 G-U; for a total of 35], in agreement with the UV hyperchromism estimate of G-C/(A-U + G-C) = 0.58.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
Fourier-transform infrared (FT-IR) spectra of yeast ribosomal 5S RNA have been acquired at several temperatures between 30 and 90 degrees C. The difference spectrum between 90 (bases unstacked) and 30 degrees C (bases stacked) provides a measure of base stacking in the RNA. Calibration difference spectra corresponding to stacking of G-C or A-U pairs are obtained from "reference" FT-IR spectra of poly(rG) X poly(rC) minus 5'-GMP and 5'-CMP or poly(rA) X poly(rU) minus 5'-AMP and 5'-UMP. The best fit linear combination of the calibration G-C and A-U difference spectra to the 5S RNA (90-30 degrees C) difference spectrum leads to a total of 25 +/- 3 base pairs (17 G-C pairs + 8 A-U pairs) for the native yeast 5S RNA in the absence of Mg2+. In the presence of Mg2+, an additional six base pairs are detected by FT-IR (one G-C and five A-U). FT-IR melting curve midpoints show that A-U and G-C pairs melt together (65 and 63 degrees C) in the presence of Mg2+ but A-U pairs melt before G-C pairs (47 vs. 54 degrees C) in the absence of Mg2+.  相似文献   
5.
广州地区中华按蚊生理年龄的组成   总被引:1,自引:1,他引:0  
中华按蚊是我国平原地区的传疟媒介,研究中华按蚊的生态学,对于疟疾的流行病学及预防均具有重要的意义。生理年龄及生殖营养环的研究,不但可以进一步认识中华按蚊在自然界的一些生态学问题,更重要的是有助于分析其传疟的作用,作为防制的依据。  相似文献   
6.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   
7.
Fifteen ancestral genotypes of United States soybean cultivars were screened for differences in photosynthetic electron transport capacity using isolated thylakoid membranes. Plants were grown in controlled environment chambers under high or low irradiance conditions. Thylakoid membranes were isolated from mature leaves. Photosynthetic electron transport was assayed as uncoupled Hill activity using 2,6-dichlorophenolindophenol (DCIP). Soybean electron transport activity was dependent on genotype and growth irradiance and ranged from 6 to 91 mmol DCIP reduced [mol chlorophyll]–1 s–1. Soybean plastocyanin pool size ranged from 0.1 to 1.3 mol plastocyanin [mol Photosystem I]–1. In contrast, barley and spinach electron transport activities were 140 and 170 mmol DCIP reduced [mol chlorophyll]–1 s–1, respectively, with plastocyanin pool sizes of 3 to 4 mol plastocyanin [mol Photosystem I]–1. No significant differences in the concentrations of Photosystem II, plastoquinone, cytochrome b6f complexes, or Photosystem I were observed. Thus, genetic differences in electron transport activity were correlated with plastocyanin pool size. The results suggested that plastocyanin pool size can vary significantly and may limit photosynthetic electron transport capacity in certain species such as soybean. Soybean plastocyanin consisted of two isoforms with apparent molecular masses of 14 and 11 kDa, whereas barley and spinach plastocyanins each consisted of single polypeptides of 8 and 12 kDa, respectively.Abbreviations DAP days after planting - DCIP 2,6-dichlorophenolindophenol - LiDS lithium dodecyl sulfate - PPFD photosynthetic photon flux density (mol photons m–2 s–1) - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
8.
Tropical tree species diversity: a test of the Janzen-Connell model   总被引:1,自引:0,他引:1  
T. V. Burkey 《Oecologia》1994,97(4):533-540
To test the premises and predictions of the Janzen-Connell model (Janzen's spacing mechanism), seeds of the rainforest canopy tree, Brosimum alicastrum, were placed at different distances from the parent tree and their removal observed over 3 weeks. The number and density of naturally occurring seeds at different distances from the parent tree were also estimated. Predation was not greater near the parent tree, except on the very small spatial scale: the proportion of experimental seeds removed was greater 1 m from the trunk than it was 5–25 m from the trunk. Predation was negatively correlated with seed density, not positively as the Janzen-Connell model assumes-presumably due to predator satiation. The density of seeds after predation peaked 5 m from the tree trunk, but this is well within the crown radius of the parent tree. There is a peak in the number of potential recruits at a distance of 10 m from the parent tree, due to the peaked initial distribution of seeds. This peak is caused by the interaction between the seed density curve and the increasing area of an annulus around the parent tree at increasing distances, not by the product of the density curve and the predation curve. However, it is important to realize that it is not the presence of a peak in recruitment away from the parent that is essential to maintaining tropical tree species diversity, but frequency-dependent recruitment induced by poor recruitment near conspecifics. Predator satiation seems to be an important factor in the survival of B. alicastrum seeds, possibly at several spatial scales. The number of seeds produced by the tree is negatively correlated with the loss to predators, and trees that have a fruiting conspecific nearby also suffer lower levels of predation. Seed predation increases as one moves from the forest edge into the interior, creating an edge effect that may have long-term effects on the forest composition and tree species diversity. More studies are needed, for other species, other localities, and larger spatial and temporal scales, on both the Janzen-Connell mechanism and this edge effect.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号