首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1989年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
It is shown for the first time that the insulin receptor substrate gene chico controls the functioning of the systems of metabolism of dopamine and juvenile hormone in Drosophila melanogaster females under normal conditions and in thermal stress.  相似文献   
2.
The effect of strong hypomorphic mutation of the insulin-like protein gene (dilp6) on metabolism of octopamine (one of the main biogenic amines in insects) was studied in Drosophila melanogaster males and females. The activity of tyrosine decarboxylase (the key enzyme of octopamine synthesis) and the activity of octopamine-dependent N-acetyltransferase (the enzyme of its degradation) were measured. It was demonstrated that the activity of both studied enzymes is decreased under normal conditions in the dilp641 mutants (as we previously demonstrated, this is correlated with an increased level of octopamine). It was also found that hypomorphic mutation of the dilp6 gene decreases the intensity of tyrosine decarboxylase response to heat stress. Thus, it was demonstrated for the first time that insulin-like DILP6 protein in drosophila influences the level of octopamine (regulating the activity of the enzyme degrading octopamine).  相似文献   
3.
Journal of Evolutionary Biochemistry and Physiology - The intracellular bacterium Wolbachia pipientis is one of the most common prokaryotic symbionts of invertebrates. It is able to affect host...  相似文献   
4.
5.
6.
Neurosecretion is critically dependent on the assembly of a macromolecular complex between the SNARE proteins syntaxin, SNAP-25 and synaptobrevin. Evidence indicates that the binding of tomosyn to syntaxin and SNAP-25 interferes with this assembly, thereby negatively regulating both synaptic transmission and peptide release. Tomosyn has two conserved domains: an N-terminal encompassing multiple WD40 repeats predicted to form two β-propeller structures and a C-terminal SNARE-binding motif. To assess the function of each domain, we performed an in vivo analysis of the N- and C- terminal domains of C. elegans tomosyn (TOM-1) in a tom-1 mutant background. We verified that both truncated TOM-1 constructs were transcribed at levels comparable to rescuing full-length TOM-1, were of the predicted size, and localized to synapses. Unlike full-length TOM-1, expression of the N- or C-terminal domains alone was unable to restore inhibitory control of synaptic transmission in tom-1 mutants. Similarly, co-expression of both domains failed to restore TOM-1 function. In addition, neither the N- nor C-terminal domain inhibited release when expressed in a wild-type background. Based on these results, we conclude that the ability of tomosyn to regulate neurotransmitter release in vivo depends on the physical integrity of the protein, indicating that both N- and C-terminal domains are necessary but not sufficient for effective inhibition of release in vivo.  相似文献   
7.
Octopamine, one of the main insect biogenic amines, plays an important role in the control of fitness in Drosophila melanogaster Meigen. The present study examines the effects of a null mutation of the gene of the insulin‐like receptor substrate (chico), in the heterozygous state, on octopamine metabolism, heat stress resistance and fecundity of D. melanogaster. A rise in the activity of one of the key enzymes of octopamine synthesis, tyrosine decarboxylase, as well as that of an enzyme of its degradation, octopamine‐dependent N‐acetyl transferase, is observed in chico1/+ females. It is also found that the resistance to heat stress is decreased and fecundity is reduced dramatically in chico1/+ flies. Such changes in these parameters in D. melanogaster females result from a rise in octopamine titre, which suggests that chico affects the octopamine level by regulating the activity of tyrosine decarboxylase.  相似文献   
8.
In natural populations, insects regularly face an adverse impact of different natures: harsh weather swings, lack of food resources, the insecticidal treatment. We studied the effect of repeated episodes of mild heat stress of different frequencies on stress resistance of Drosophila melanogaster females. We found out that the mild heat stress (38°С, 1 hr) repeated daily within 2 weeks resulted in (a) an increased activity of the dopamine (DA) metabolism enzymes, DA‐dependent arylalkylamine N‐acetyltransferase and alkaline phosphatase, which suggested a decrease in DA level, and (b) an increased survival rate under acute heat stress (38°С, 4 hr). The same mild heat stress repeated weekly had no effect on these parameters.  相似文献   
9.
10.
Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号