首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   8篇
  2021年   3篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2005年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1957年   1篇
排序方式: 共有94条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Buckman J  Miller SM 《Biochemistry》2000,39(34):10521-10531
The transient kinetics of the reaction of the estrogen binding protein (EBP1) from Candida albicans in which hydride is transferred from NADPH to trans-2-hexenal (HXL) in two half-reactions were analyzed using UV-visible spectrophotometric and fluorometric stopped-flow techniques. The simplest model of the first half-reaction involves four steps including very rapid, tight binding (K(d) 相似文献   
6.
Buckman J  Miller SM 《Biochemistry》2000,39(34):10532-10541
EBP1-catalyzed reduction of alpha,beta-unsaturated ketones and aldehydes is proposed to proceed via transfer of hydride from the flavin to the beta-position of the olefinic bond, concomitant with or followed by uptake of a proton at the alpha-position. Structural analysis suggests that this proton is donated from Tyr206, and, hence, a protein was constructed in which it was replaced by phenylalanine. The mutation results in a slightly less stable protein than the wild type that nevertheless retains the fundamental flavin and phenol binding properties of EBP1 characterized previously. The pH profile for binding of phenol was characterized over the pH range 6.5-9.5 and was found to be simpler than that for the wild-type enzyme. Most importantly, a pK(a) of 8.7 that is perturbed to 9.4 upon binding of phenol to the wild-type enzyme is missing in the mutant, allowing assignment of this pK(a) to the Y206 hydroxyl group. Additionally, the pK(a) of phenol is further lowered from its value of 10.0 in solution to approximately 6.4 in the active site of the mutant, as compared to 7.1 in the wild type. Together, these perturbations lead to an increase of approximately 35-fold in the binding affinity of the mutant for phenol at high pH relative to the affinity of the wild-type enzyme. As expected, the mutation has little effect on the reductive half-reaction, in which a hydride equivalent is transferred from NADPH to the flavin. In contrast, the reduction of trans-2-hexenal by the reduced enzyme is significantly affected. The results indicate formation of a previously unobserved charge-transfer (CT) complex following formation of the Michaelis complex between substrate and reduced enzyme and preceding reduction of the substrate, which occurs at a greatly reduced rate (>/=440-fold) relative to wild type. Thus, while the oxidative half-reaction with wild-type enzyme is limited by the rate of formation of the CT complex, it is the chemical step that is rate-limiting in the reaction with EBP1:Y206F, consistent with the role of this residue as a general acid.  相似文献   
7.
The CC chemokine receptor-1 (CCR1) is a prime therapeutic target for treating autoimmune diseases. Through high capacity screening followed by chemical optimization, we identified a novel non-peptide CCR1 antagonist, R-N-[5-chloro-2-[2-[4-[(4-fluorophenyl)methyl]-2-methyl-1-piperazinyl ]-2-oxoethoxy]phenyl]urea hydrochloric acid salt (BX 471). Competition binding studies revealed that BX 471 was able to displace the CCR1 ligands macrophage inflammatory protein-1alpha (MIP-1alpha), RANTES, and monocyte chemotactic protein-3 (MCP-3) with high affinity (K(i) ranged from 1 nm to 5.5 nm). BX 471 was a potent functional antagonist based on its ability to inhibit a number of CCR1-mediated effects including Ca(2+) mobilization, increase in extracellular acidification rate, CD11b expression, and leukocyte migration. BX 471 demonstrated a greater than 10,000-fold selectivity for CCR1 compared with 28 G-protein-coupled receptors. Pharmacokinetic studies demonstrated that BX 471 was orally active with a bioavailability of 60% in dogs. Furthermore, BX 471 effectively reduces disease in a rat experimental allergic encephalomyelitis model of multiple sclerosis. This study is the first to demonstrate that a non-peptide chemokine receptor antagonist is efficacious in an animal model of an autoimmune disease. In summary, we have identified a potent, selective, and orally available CCR1 antagonist that may be useful in the treatment of chronic inflammatory diseases.  相似文献   
8.
A novel series of cyclic potent, selective, small molecule, thiol-based inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) and the crystal structures of TAFIa inhibitors bound to porcine pancreatic carboxypeptidase B are described. Three series of cyclic arginine and lysine mimetic inhibitors vary significantly in their selectivity against other human basic carboxypeptidases, carboxypeptidase N and carboxypeptidase B. (-)2a displays TAFIa IC50 = 3 nM and 600-fold selectivity against CPN. Inhibition of TAFIa with (rac)2a resulted in dose dependent acceleration of human plasma clot lysis in vitro and was efficacious as an adjunct to tPA in an in vivo rabbit jugular vein thrombolysis model.  相似文献   
9.
Human adaptability involves interconnected biological and psychological control processes that determine how successful we are in meeting internal and environmental challenges. Heart rate variability (HRV), the variability in consecutive R-wave to R-wave intervals (RRI) of the electrocardiogram, captures synergy between the brain and cardiovascular control systems that modulate adaptive responding. Here we introduce a qualitatively new dimension of adaptive change in HRV quantified as a redistribution of spectral power by applying the Wasserstein distance with exponent 1 metric (W(1)) to RRI spectral data. We further derived a new index, D, to specify the direction of spectral redistribution and clarify physiological interpretation. We examined gender differences in real time RRI spectral power response to alcohol, placebo and visual cue challenges. Adaptive changes were observed as changes in power of the various spectral frequency bands (i.e., standard frequency domain HRV indices) and, during both placebo and alcohol intoxication challenges, as changes in the structure (shape) of the RRI spectrum, with a redistribution towards lower frequency oscillations. The overall conclusions from the present study are that the RRI spectrum is capable of a fluid and highly flexible response, even when oscillations (and thus activity at the sinoatrial node) are pharmacologically suppressed, and that low frequency oscillations serve a crucial but less studied role in physical and mental health.  相似文献   
10.
The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号