首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   28篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   15篇
  2011年   18篇
  2010年   14篇
  2009年   14篇
  2008年   11篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   8篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1988年   9篇
  1987年   4篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有249条查询结果,搜索用时 140 毫秒
1.
2.
An extensive analysis of genomic DNA preparations from a number of normal and malignant tissues revealed BglII site polymorphism of the human p53 gene. Approximately 10% of p53 gene alleles were found to contain an additional BglII site localized in a region of intron I. This allelic form of p53 gene was also responsible for p53 protein having altered electrophoretic mobility. Molecular cloning and sequencing of both the alleles of p53 gene revealed a base-pair change in codon 72 causing arginine → proline substitution in the allele with the additional BglII site. Both variants of the p53 gene may occur in homozygous state and are therefore functional.  相似文献   
3.
An extensive analysis of genomic DNA preparations from a number of normal and malignant tissues revealed BglII site polymorphism of the human p53 gene. Approximately 10% of p53 gene alleles were found to contain an additional BglII site localized in a region of intron I. This allelic form of p53 gene was also responsible for p53 protein having altered electrophoretic mobility. Molecular cloning and sequencing of both the alleles of p53 gene revealed a base-pair change in codon 72 causing arginine → proline substitution in the allele with the additional BglII site. Both variants of the p53 gene may occur in homozygous state and are therefore functional.  相似文献   
4.
In this paper we demonstrate the study of plant water balanceby the non-invasive measurement of tissue water content andwater flow using proton nuclear magnetic resonance (NMR). Sapvelocity and flux were measured independently in the presenceof an excess of stationary tissue water. The instrumentationdescribed allows automated and unattended measurement of flow-and water content-variables in a well-defined region of theplant over periods of several days, with a time resolution betweensuccessive measurements of c. 5 s. Using this apparatus theeffect of changes in light intensity (day/night rhythm) andrelative humidity on stem tissue water content as well as onthe velocity and flux of xylem sap in the stem were investigatedin a cucumber plant. The results are in agreement with predictionsfrom a simple model for plant water balance, which is basedon water potential, flow rate and resistance to flow. As longas only transpiration is varied, flow rate and water content(or potential) are affected in opposite ways as demonstratedin this paper. In contrast, the model predicts that changesin uptake (resulting from changes in, for example, root resistance)will induce changes in water content and flow in the same direction.An experimental verification of this prediction is given ina subsequent paper, where, in addition, the NMR results arecompared to those obtained with a dendrometer. Key words: Water balance model, Cucumis sativus L., flow, water content, NMR, water balance measurement  相似文献   
5.
Wine vinegar is a product obtained from wine acidification which contains at least 5% by wt. of acetic acid, in general without any additives or colorings.
Aspects studied in this work include: the determination of the taste group thresholds (geometric mean of the individual best-estimate thresholds "BET") of two different acids (citric and acetic acids) in aqueous solution and spanish vinegars produced from table and sherry wines. The results obtained suggest that wine vinegar can be considered something more than just an acidulant agent.
In order to evaluate differences among wine vinegars, discriminant tests for twenty-five spanish vinegars (sherry, table and flavored vinegars) were applied. Six of the twelve attributes freely chosen by assessors allowed grouping of the spanish wine vinegars according to their sensory aspects.  相似文献   
6.
7.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   
8.
In this paper, we report that the DNA of bovine mammillitis virus (BMV) consists of two covalently linked components that are 71.5 x 10(6) and 15.7 x 10(6) in molecular weight and designated L and S, respectively. We further report that the BMV DNA consists of four equimolar populations differing only in the orientation of the L and S components relative to each other. This conclusion is based on the following: (i) The sum molecular weight of fragments generated by digestion of BMV DNA with Hsu I, Hpa I, Bgl II, or Xba I significantly exceeds the established molecular weight of the intact DNA. (ii) In each digest, the fragments form three groups differing in molar concentration. In reference to the molar concentration of intact DNA, each enzyme digest contained a set of four fragments 0.25 M in concentration, a set of four fragments 0.5 M in concentration, and a variable size set, unique for each enzyme digest, 1.0 M in concentration. (iii) Experiments involving digestion of intact DNA by lambda exonuclease followed by restriction endonuclease digestion established that each of four 0.5 M fragments were positioned at the termini of the BMV DNA. (iv) Complete maps for the fragments generated by each enzyme established that the 0.25 M fragments arise by fusion of the sequences of the terminal fragments when these are juxtaposed as a consequence of the inversion of L and S components. The maps also established the dimensions of the L and S components. We conclude that the structure of BMV DNA is similar to that of HSV DNA previously shown to consist of two unequal size components that invert relative to each other.  相似文献   
9.
Fused in sarcoma (FUS) belongs to the group of RNA-binding proteins implicated as underlying factors in amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. Multiple FUS gene mutations have been linked to hereditary forms, and aggregation of FUS protein is believed to play an important role in pathogenesis of these diseases. In cultured cells, FUS variants with disease-associated amino acid substitutions or short deletions affecting nuclear localization signal (NLS) and causing cytoplasmic mislocalization can be sequestered into stress granules (SGs). We demonstrated that disruption of motifs responsible for RNA recognition and binding not only prevents SG recruitment, but also dramatically increases the protein propensity to aggregate in the cell cytoplasm with formation of juxtanuclear structures displaying typical features of aggresomes. Functional RNA-binding domains from TAR DNA-binding protein of 43 kDa (TDP-43) fused to highly aggregation-prone C-terminally truncated FUS protein restored the ability to enter SGs and prevented aggregation of the chimeric protein. Truncated FUS was also able to trap endogenous FUS molecules in the cytoplasmic aggregates. Our data indicate that RNA binding and recruitment to SGs protect cytoplasmic FUS from aggregation, and loss of this protection may trigger its pathological aggregation in vivo.  相似文献   
10.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号