首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   38篇
  2021年   3篇
  2018年   4篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   14篇
  2012年   14篇
  2011年   10篇
  2010年   12篇
  2009年   13篇
  2008年   8篇
  2007年   9篇
  2006年   14篇
  2005年   8篇
  2004年   14篇
  2003年   10篇
  2002年   13篇
  2001年   9篇
  2000年   16篇
  1999年   15篇
  1998年   7篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1981年   4篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   5篇
  1972年   6篇
  1971年   4篇
  1969年   3篇
  1968年   6篇
  1967年   2篇
排序方式: 共有399条查询结果,搜索用时 594 毫秒
1.
Fructose 2,6-bisphosphate, the most potent activator of 6-phosphofructo-1-kinase, has been demonstrated to mediate the increase of glycolytic flux induced by mitogens human fibroblasts. In the present work the molecular basis of transmembrane control of fructose 2,6-bisphosphate has been investigated. Prostacyclin and isoprenaline, known to activate adenylate cyclase, are able to increase fructose 2,6-bisphosphate levels, indicating that in human fibroblasts cyclic AMP plays a positive role in the control of the metabolite concentration, opposite to that exerted in hepatocytes. Substances known to activate protein kinase C such as phorbol 12-myristate 13-acetate, or to stimulate phosphoinositide turnover such as thrombin and bradykinin are also effective in raising fructose 2,6-bisphosphate. Therefore, we conclude that cyclic AMP and protein kinase C are likely involved in the control of fructose 2,6-bisphosphate levels in human fibroblasts.  相似文献   
2.
The effect of lysophosphatidylserine on immunological histamine release has been studied in rat peritoneal mast cells actively sensitized with horse serum and in human basophils challenged with anti-IgE. In contrast to other lysophospholipids, lysophosphatidylserine enhances the immunological histamine release in rat mast cells. The effect shows the kinetics of a saturable process with an apparent Km for lysophosphatidylserine of 0.26 microM. A similar Km value (0.21 microM) is found when measuring the non-immunological histamine release activated by lysophosphatidylserine plus nerve growth factor. A comparison with phosphatidylserine shows that a half-maximal response to lysophosphatidylserine occurs at a concentration 4-times lower. In addition, the magnitude of the response is higher. At variance with rat mast cells, lysophosphatidylserine does not influence the histamine release elicited by immunological and non-immunological stimuli in human basophils. The histamine secretion in these cells is instead affected by a calcium ionophore or tetradecanoylphorbolacetate, a compound producing activation of protein kinase C.  相似文献   
3.
F Bruni  G Careri    J S Clegg 《Biophysical journal》1989,55(2):331-338
Cellular cysts of the crustacean Artemia provide a useful model for studies on water-dependent mechanisms in cellular function because they can undergo reversible cycles of dehydration-rehydration. We explored their dielectric behavior over the frequency range of 10 kHz to 1 MHz, at water contents between near zero and 0.5 g H2O/g dry weight (g/g). The dc conductivity and static dielectric permittivity were evaluated from electrostatic analysis of data obtained with a three-layered capacitor. Below cyst hydrations of 0.05 g/g, negligible dielectric response was observed at all frequencies. Between 0.05 and 0.25 g/g the permittivity increased sharply then reached a near plateau up to cyst hydrations close to 0.35 g/g, above which a second abrupt increase occurred. Values for the dielectric loss (tan delta) exhibited frequency-dependent peaks over the hydration range of 0.05-0.3 g/g, followed by an abrupt increase near 0.35 g/g, an hydration at which metabolism is first initiated in this system. These hydration-dependent dielectric changes are compared with previous studies on the biology and physics of this system, and evaluated by a model involving percolative ionic (likely protonic) conduction. Percolative behavior is characterized by a sharp increase in conductivity at a critical threshold of hydration (hc) according to a power law in which the exponent, t, equals 1.65 for a three-dimensional infinite lattice. For the Artemia cyst, t = 1.64 above hc = 0.35 g/g, which is in excellent agreement with theory. These results are compared to similar studies on lysozyme which also exhibits percolative behavior connected with the onset of biological function.  相似文献   
4.
An endpoint enzymatic assay for fructose 2,6-bisphosphate based on the ability of the compound to stimulate pyrophosphate 6-phosphofructo-1-kinase and performed in a 96-well plate is reported here. The method presents a low detection limit and a high sensitivity that could be further improved; moreover, the use of 96-well plates greatly increases the number of samples that can be simultaneously assayed.  相似文献   
5.
1. Insulin is able to stimulate lactate production and to enhance fructose 2,6-bisphosphate (Fru-2,6-P2) content in 3T3-L1 adipocytes. 2. Phorbol 12-myristate 13-acetate is more efficacious than insulin in rising Fru-2,6-P2 content and less effective in the stimulation of glycolysis. 3. 3T3-L1 adipocyte 6-phosphofructo-l-kinase appears to be very sensitive to exogenous Fru-2,6-P2. 4. Insulin treatment does not affect the maximum activity of 6-phosphofructo-1-kinase whereas it markedly increases the affinity of pyruvate kinase for phosphoenolpyruvate. 5. The role of Fru-2,6-P2 in the insulin induced enhancement of glycolytic flux is discussed.  相似文献   
6.
7.
Summary A detailed comparative analysis of the Escherichia coli and Salmonella typhimurium hisIE and hisD gene products and the functionally equivalent, single, HIS4 gene product of Saccharomyces cerevisiae permitted several insights concerning the relationship between these genes. Our analysis supports the idea that HIS4 results from the fusion of hisIE and hisD. The comparison permitted a more precise definition of the functional domains of hisI/HIS4A and hisE/HIS4B as well as the two functional domains of hisD/HIS4C. The homologies between the bacterial and yeast sequences suggest a region of the hisD/HIS4C protein that may constitute one of the active centres. A large fragment at the amino terminal region of the yeast protein is missing from the bacterial hisIE gene product and is probably not needed for catalytic activity. Another region of non-homology in the yeast protein is probably a peptide bridge connecting the HIS4AB domain to HIS4C. Although the overall homology at the level of amino acid sequence is modest (about 38%) there is a striking similarity when the hydropathic patterns and predicted secondary structural configurations of these proteins are compared.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号