首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有31条查询结果,搜索用时 390 毫秒
1.
Molecular and Cellular Biochemistry - The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy...  相似文献   
2.
Troponin T (TnT) is an essential protein in the Ca2+ regulatory system of striated of muscle. Three fiber type-specific TnT genes have evolved in higher vertebrates to encode cardiac, slow and fast skeletal muscle TnT isoforms. To understand the functional significance of TnT isoforms, we studied the effects of acidosis on the contractility of transgenic mouse cardiac muscle that expresses fast skeletal muscle TnT. Contractility analysis of intact cardiac muscle strips showed that while no differences were detected at physiological pH, the transgenic cardiac muscle had significantly greater decreases in +dF/dtmax at acidic pH than that of the wild-type control. Contractility of skinned cardiac muscles demonstrated that the presence of fast TnT resulted in significantly larger decreases in force and Ca2+ sensitivity at acidic pH than that of the wild-type control. The effect of TnT isoforms on the tolerance of muscle to acidosis may explain the higher tolerance of embryonic versus adult cardiac muscles. The results are consistent with the hypothesis that charge differences in TnT isoforms contribute to the contractility of muscle. The data further support a hypothesis that slow TnT is similar to the cardiac, but not fast, and TnT may contribute to the higher tolerance of slow muscles to stress conditions. Therefore, TnT isoform diversity may contribute to the compatibility of muscle thin filaments to cellular environments in different fiber types, during development and functional adaptation.  相似文献   
3.
4.
5.
Phosphoinositide (3,5)-bisphosphate [PI(3,5)P(2)] is a newly identified phosphoinositide that modulates intracellular Ca(2+) by activating ryanodine receptors (RyRs). Since the contractile state of arterial smooth muscle depends on the concentration of intracellular Ca(2+), we hypothesized that by mobilizing sarcoplasmic reticulum (SR) Ca(2+) stores PI(3,5)P(2) would increase intracellular Ca(2+) in arterial smooth muscle cells and cause vasocontraction. Using immunohistochemistry, we found that PI(3,5)P(2) was present in the mouse aorta and that exogenously applied PI(3,5)P(2) readily entered aortic smooth muscle cells. In isolated aortic smooth muscle cells, exogenous PI(3,5)P(2) elevated intracellular Ca(2+), and it also contracted aortic rings. Both the rise in intracellular Ca(2+) and the contraction caused by PI(3,5)P(2) were prevented by antagonizing RyRs, while the majority of the PI(3,5)P(2) response was intact after blockade of inositol (1,4,5)-trisphosphate receptors. Depletion of SR Ca(2+) stores with thapsigargin or caffeine and/or ryanodine blunted the Ca(2+) response and greatly attenuated the contraction elicited by PI(3,5)P(2). The removal of extracellular Ca(2+) or addition of verapamil to inhibit voltage-dependent Ca(2+) channels reduced but did not eliminate the Ca(2+) or contractile responses to PI(3,5)P(2). We also found that PI(3,5)P(2) depolarized aortic smooth muscle cells and that LaCl(3) inhibited those aspects of the PI(3,5)P(2) response attributable to extracellular Ca(2+). Thus, full and sustained aortic contractions to PI(3,5)P(2) required the release of SR Ca(2+), probably via the activation of RyR, and also extracellular Ca(2+) entry via voltage-dependent Ca(2+) channels.  相似文献   
6.
Mitsugumin 29 (MG29) is a transmembrane protein that is normally found in the triad junction of skeletal muscle. Our previous studies have shown that targeted deletion of rag29 from the skeletal muscle resulted in abnormality of the triad junction structure, and also increased susceptibility to muscle fatigue. To elucidate the basis of these effects, we investigated the properties of Ca^2 uptake and -release in toxin-skinned Extensor Digitorium Longus (EDL) muscle fibers from control and rag29 knockout mice. Compared with the control muscle, submaximal Ca^2 uptake into the sarcoplasmic reticulum (SR) was slower and the storage of Ca^2 inside the SR was less in the mutant muscle, due to increased leakage process of Ca^2 movement across the SR. The leakage pathway is associated with the increased sensitivity of Ca^2 /caffeine -induced Ca^2 release to myoplasmic Ca^2 . Therefore, the increased fatigability of mutant EDL muscles can result from a combination of a slowing of Ca^2 uptake, modification of Ca^2 -induced Ca^2 release (CICR), and a reduction in total SR Ca^2 content.  相似文献   
7.
The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL) and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL). The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the ‘best close match’ test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.  相似文献   
8.
9.
In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging.  相似文献   
10.
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号