首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   15篇
  2023年   1篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1969年   3篇
  1968年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
1.
Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.  相似文献   
2.
Ethanolamine is deaminated by the action of ethanolamine ammonia-lyase (EC 4.3.1.7), an adenosylcobalamin-dependent enzyme. Consequently, to grow on ethanolamine as a sole nitrogen source, Bacillus megaterium requires vitamin B12. Identification of B. megaterium mutants deficient for growth on ethanolamine as the sole nitrogen source yielded a total of 34 vitamin B12 auxotrophs. The vitamin B12 auxotrophs were divided into two major phenotypic groups: Cob mutants, which could use cobinamide or vitamin B12 to grow on ethanolamine, and Cbl mutants, which could be supplemented only by vitamin B12. The Cob mutants were resolved into six classes and the Cbl mutants were resolved into three, based on the spectrum of cobalt-labeled corrinoid compounds which they accumulated. Although some radiolabeled cobalamin was detected in the wild type, little or none was evident in the auxotrophs. The results indicate that Cob mutants contain lesions in biosynthetic steps before the synthesis of combinamide, while Cbl mutants are defective in the conversion of cobinamide to cobalamin. Analysis of phage-mediated transduction experiments revealed tight genetic linkage within the Cob class and within the Cbl class. Similar transduction analysis indicated the Cob and Cbl classes are weakly linked. In addition, cross-feeding experiments in which extracts prepared from mutants were examined for their effect on growth of various other mutants allowed a partial ordering of mutations within the cobalamin biosynthetic pathway.  相似文献   
3.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   
4.
5.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   
6.
Summary Population dynamics of the epizoic bivalve Lissarca notorcadensis living on spines of cidaroid sea urchins in the Weddell Sea were investigated. Total production (somatic & gonad) of the suspension feeding bivalve ranged between 16.5 and 487.4 mg AFDM y–1 per sea urchin. Annual sedimentation rates are not sufficient to maintain the production of the Lissarca sub-populations carried by the sea urchins, and resuspension of organic matter is most likely to be an important food source. The ratio of the number of freshly settled juveniles to the number of embryos brooded is between 0.054 and 0.207 and seems negatively related to the biomass already present, indicating intraspecific competition for space. Interspecific competition for space is caused by the strong preference of L. notorcadensis as well as other epizoa (colonial anthozoans and bryozoans) for the spines located on the aboral hemispere of the sea urchins.AWI Publication No. 572  相似文献   
7.
8.
A method for the activation and measurement of insect prophenol oxidase using nitrocellulose membrane is presented. Using this method we were able to conveniently activate both crude and purified prophenol oxidase from insects belonging to three different orders. This rapid method allows for prophenol oxidase activation, in the absence of a prophenol oxidase-activating system, and in the presence of high ionic strength, protease inhibitors, or chelator.  相似文献   
9.
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast–endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.  相似文献   
10.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号