首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   3篇
  2019年   1篇
  2017年   2篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   
2.
Two novel macromolecular MRI contrast agents based upon generation-6 polyamidoamine dendrimers (G6) of presumed similar molecular size, but of different molecular weight, were compared in terms of their blood retention, tissue distribution, and renal excretion. Two G6s with either ammonia core (G6A) or with ethylenediamine core (G6E), which possessed 192 and 256 exterior primary amino groups, respectively, were used. These dendrimers were reacted with 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The G6--1B4M conjugates were reacted with (153)Gd for studying biodistribution and blood clearance or Gd(III) for the MRI study. 3D-micro-MR angiography of the mice were taken with injection of 0.033 mmol of Gd/kg of G6A--(1B4M-Gd)(192) or G6E--(1B4M-Gd)(256) using a 1.5-T superconductive MRI unit. Although numerous fine vessels of approximately 100 microm diameter were visualized on subtracted 3D-MR-angiography with both G6A--(1B4M-Gd)(192) and G6E--(1B4M-Gd)(256), (153)Gd-labeled saturated G6E-(1B4M)(256) remained in the blood significantly more than (153)Gd-labeled saturated G6A--(1B4M)(192) at later than 15 min postinjection (p < 0.01). In addition, G6E--(1B4M-Gd)(256) visualized these finer vessels longer than G6A--(1B4M-Gd)(192). The G6A--(1B4M-Gd)(192) showed higher signal intensity in the kidney on the dynamic MR images and brighter kidney images than G6E--(1B4M-Gd)(256). In conclusion, the G6A--(1B4M-Gd)(192) was observed to go through glomerular filtration more efficiently than G6E--(1B4M-Gd)(256) resulting faster clearance from the blood and higher renal accumulation, even though both of G6--1B4M conjugates have almost similar molecular size and same chemical structure. In terms of the ability of intravascular contrast agents, G6E--(1B4M-Gd)(256) was better due to more Gd(III) atoms per molecule and longer retention in the circulation than G6A--(1B4M-Gd)(192).  相似文献   
3.
To achieve cellular iron deprivation by chelation, it is important to develop chelators with selective metal-binding properties. Selectivity for iron has long been the province of certain oxygen-donor chelators such as desferrioxamine, which target Fe(III) and exploit the strength of a relatively ionic Fe(III)-O interaction. We have been studying novel chelators that possess mechanisms to selectively chelate +2 biometals, particularly tachpyr [N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis-triaminocyclohexane] and derivatives from N,N',N"-trialkylation and pyridine ring alkylation. Metal-exchange and metal-binding competition reactions have been conducted at pH 7.4, 37 degrees C and time periods until no further change was observed (generally 24-48 h). Under anaerobic conditions, tachpyr is strongly selective for iron, binding 95+/-5% Fe(II) versus 5+/-5% Zn(II) in the forms [Fe(tachpyr)](2+) and [Zn(tachpyr)](2+) respectively. Under aerobic conditions, tachpyr complexes Fe(II) more effectively than Fe(III), forming iminopyridyl complexes [Fe(tachpyr-ox-n)](2+) (n=2, 4) by O(2)-induced and iron-mediated oxidative dehydrogenation. Complexes [Fe(tachpyr-ox-n)](2+) are also strongly bound forms of iron that are unaffected by an excess of Zn(II) (75 mol zinc:1 mol iron complex). The preference of tachpyr for iron over zinc under aerobic conditions appears to be hindered by oxidation of Fe(II) to Fe(III), such that the proportions bound are 44+/-10% Fe(II) versus 56+/-10% Zn(II), in the respective forms [Fe(tachpyr-ox-n)](2+) and [Zn(tachpyr)](2+). However, upon addition of the reducing agent Na(2)S(2)O(4) that converts Fe(III) to Fe(II), the binding proportions shift to 76+/-10% Fe(II) versus 24+/-10% Zn(II), demonstrating a clear preference of tachpyr for Fe(II) over Zn(II). Iron(II) is in the low-spin state in [Fe(tachpyr)](2+) and [Fe(tachpyr-ox-n)](2+) (n=2, 4), which is a likely cause of the observed selectivity. N-methylation of tachpyr [giving (N-methyl)(3)tachpyr] results in the loss of selectivity for Fe(II), which is attributed to the steric effect of the methyl groups and a resulting high-spin state of Fe(II) in [Fe(N-methyl)(3)tachpyr)](2+). The relationship of chelator selectivity to cytotoxicity in the tach family will be discussed.  相似文献   
4.
A new bifunctional ligand C-DEPA was designed and synthesized as a component for antibody-targeted radiation therapy (radioimmunotherapy, RIT) of cancer. C-DEPA was conjugated to a tumor targeting antibody, trastuzumab, and the corresponding C-DEPA-trastuzumab conjugate was evaluated for radiolabeling kinetics with 205/6Bi. C-DEPA-trastuzumab conjugate rapidly bound 205/6Bi, and 205/6Bi-C-DEPA-trastuzumab conjugate was stable in human serum for 72 h. The in vitro radiolabeling kinetics and serum stability data suggest that C-DEPA is a potential chelate for preclinical RIT applications using 212Bi and 213Bi.  相似文献   
5.
Although the epidermal growth factor receptor (EGFR), also known as HER1, has been studied for over a decade, it continues to be a molecule of great interest and focus of investigators for development of targeted therapies. The marketed monoclonal antibody cetuximab binds to HER1, and thus might serve as the basis for creation of imaging or therapies that target this receptor. The potential of cetuximab as a vehicle for the delivery of α-particle radiation was investigated in an intraperitoneal tumor mouse model. The effective working dose of 10 μCi of 212Pb-cetuximab was determined from a dose (10–50 μCi) escalation study. Toxicity, as indicated by the lack of animal weight loss, was not evident at the 10 μCi dose of 212Pb-cetuximab. A subsequent study demonstrated 212Pb-cetuximab had a therapeutic efficacy similar to that of 212Pb-trastuzumab (p = 0.588). Gemcitabine given 24 h prior to 212Pb-cetuximab increased the median survival from 174 d to 283 d, but carboplatin suppressed the effectiveness of 212Pb-cetuximab. Notably, concurrent treatment of tumor-bearing mice with 212Pb-labeled cetuximab and trastuzumab provided therapeutic benefit that was greater than either antibody alone. In conclusion, cetuximab proved to be an effective vehicle for targeting HER1-expressing tumors with α-radiation for the treatment of disseminated intraperitoneal disease. These studies provide further evidence that the multimodality therapy regimens may have greater efficacy and benefit in the treatment of cancer patients.  相似文献   
6.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
7.
Two novel imaging agents trastuzumab-Cy5.5-CHX-A″ 1 and cetuximab-Cy7-CHX-A″ 2, bearing both a chelating moiety (CHX-A″) for sequestering metallic radionuclides (86Y or 111In) and the near infrared dye Cy5.5/Cy7, were prepared by a novel modular synthetic strategy as examples of dual-labeled, antibody-based imaging probe library. Fluorescent microscopy illustrated that 1 and 2 strongly bind to HER2-expressing cancer cells (e.g., NIH3T3–HER2+, SKOV-3) and to EGFR-expressing cancer cells (e.g., A431), respectively, thereby demonstrating that the functionality of the targeting moiety is conserved. Hence, the described novel synthesis strategy can be applied to engineer other tumor-targeted monoclonal antibody based probes for multimodality imaging.  相似文献   
8.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   
9.
To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and 212Pb-trastuzumab (Pac/212Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/212Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/212Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that 212Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.  相似文献   
10.
Samarium-153 (153Sm) radioimmunoconjugates of the monoclonal antibody K-1-21 were produced using the bifunctional chelate 2-(p-isothiocyanatobenzyl)-6- methyldiethylenetriaminepentaacetic acid (Mx-DTPA). The specific activity (up to 150 MBq mg-1) and percent retained immunoreactivity (greater than 75%) were similar to that of 153Sm-K-1-21 conjugates formed with cyclic DTPA anhydride (cDTPAa). In vivo biodistribution studies showed specific localization of 153Sm-Mx-DTPA-K-1-21 to target antigen implants and higher blood pool and lower uptake in liver, spleen, kidney, and bone when compared to 153Sm-cDTPAa-K-1-21. The improved in vivo distribution of 153Sm-Mx-DTPA-K-1-21 should result in lower radiotoxicity to nontarget tissues when used for radioimmunotherapy purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号