首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   13篇
  2010年   11篇
  2009年   4篇
  2008年   13篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   6篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1940年   1篇
排序方式: 共有158条查询结果,搜索用时 353 毫秒
1.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   
2.
3.
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransglycosylase by sequence similarity and enzyme activity. Xyloglucan endotransglycosylases most likely modify cell walls, a fundamental determinant of plant form. We determined that TCH4 expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development, by a 1-kb region. Expression was restricted to expanding tissues and organs that undergo cell wall modification. Regulation of genes encoding cell wall-modifying enzymes, such as TCH4, may underlie plant morphogenetic responses to the environment.  相似文献   
4.
Cereals are the world's major source of food for human nutrition. Among these, rice (Oryza sativa) is the most prominent and represents the staple diet for more than two-fifths (2.4 billion) of the world's population, making it the most important food crop of the developing world (Anon., 2000a). Rice production in vast stretches of coastal areas is hampered due to high soil salinity. This is because rice is a glycophyte and it does not grow well under saline conditions. In order to increase rice production in these areas there is a need to develop rice varieties suited to saline environments. Research has shown that Porteresia coarctata, a highly salt tolerant wild relative of rice growing in estuarine soils, is an important material for transferring salt tolerant characteristics to rice. It is quite possible that Porteresia may be used as a parent for evolving better and truly salt resistant varieties. The inadequate results and the difficulties associated with conventional breeding techniques necessitate the use of the tools of crop biotechnology in unravelling some of the characteristics of Porteresia that have been highlighted in this report. In view of the limited resources available for increasing salinity tolerance to the breeders to wild rice germplasm, Porteresia is undoubtedly one of the key source species for elevating salinity tolerance in cultivated rice.  相似文献   
5.
6.
The effect of neurotensin on submaximally-stimulated hepatobiliary and pancreatic secretion was studied in 6 healthy subjects. An intravenous infusion of neurotensin 1.4 ± 0.3 pmol/kg/min, designed to reproduce plasma neurotensin immunoreactivity levels within the physiological range, produced a significant increase in pancreatic bicarbonate output. Plasma concentrations of pancreatic polypeptide rose by 83 ± 16 pmol/l and were associated with a small reduction in trypsin, but no significant change in bilirubin outputs.  相似文献   
7.
8.
Unexpected induction of arrhythmias in the heart is still one of the major risks of new drugs despite recent improvements in cardiac safety assays. Here we address this in a novel emerging assay system. Eleven reference compounds were administrated to spontaneously beating clusters of cardiomyocytes from human pluripotent stem cells (hPSC-CM) and the responses determined using multi-electrode arrays. Nine showed clear dose-dependence effects on field potential (FP) duration. Of these, the Ca2 + channel blockers caused profound shortening of action potentials, whereas the classical hERG blockers, like dofetilide and d,l-sotalol, induced prolongation, as expected.Unexpectedly, two potent blockers of the slow component of the delayed rectifier potassium current (IKs), HMR1556 and JNJ303, had only minor effects on the extracellular FP of wild-type hPSC-CM despite evidence of functional IKs channels. These compounds were therefore re-evaluated under conditions that mimicked reduced “repolarization reserve,” a parameter reflecting the capacity of cardiomyocytes to repolarize and a strong risk factor for the development of ventricular arrhythmias. Strikingly, in both pharmacological and genetic models of diminished repolarization reserve, HMR1556 and JNJ03 strongly increased the FP duration. These profound effects indicate that IKs plays an important role in limiting action potential prolongation when repolarization reserve is attenuated. The findings have important clinical implications and indicate that enhanced sensitization to repolarization-prolonging compounds through pharmacotherapy or genetic predisposition should be taken into account when assessing drug safety.  相似文献   
9.
10.
The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7 -/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号