首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   6篇
  2017年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2010年   1篇
  2009年   3篇
  2007年   2篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有26条查询结果,搜索用时 171 毫秒
1.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
2.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
3.
Plant and Soil - The main aim was to evaluate the effect of endophytic association of Sarocladium implicatum on drought responses of Brachiaria grass cultivars under greenhouse conditions. We...  相似文献   
4.
A significant proportion of arable land in south-western Australia is highly susceptible to subsoil compaction, which limits access of roots of wheat to water and nutrients at depth. Genotypic variation in the ability of roots to penetrate a hardpan has been reported for other cereals, using a pot technique, where a thin wax-layer of paraffin wax and petroleum jelly is placed in a soil column to simulate a hardpan. Previously we have modified and validated this technique for measuring root penetration ability of wheat seedlings under contrasting water regimes. Here we report on a series of five experiments (runs), two in well-watered and three in drought stress conditions, which evaluated seminal and nodal root penetration ability through thin wax layers among 24 Australian wheat cultivars and breeding lines (entries). These results were compared with observations on their rooting depths in two contrasting soil types in field trials, including a sandy duplex that contained a hardpan and a red clay that increased in soil strength with depth. Nodal roots ceased growth early under soil water deficit, and water uptake was instead dependant on seminal roots under conditions imposed in the pots. Plants were then reliant on the ability of seminal roots to penetrate the wax layer. Eight entries had superior root penetration ability in both well-watered and drought stressed conditions. Roots of three other entries, which failed to penetrate the wax layers, died under drought stress conditions. In field trials, there was a significant interaction between site and entry for maximum root depth. Our results from the pot studies and field trials indicate that there exists genotypic variation in root traits that are required to penetrate uniformly hard soil, dry soil or soil containing a hardpan. As four of the eight superior entries also showed superior root penetration ability at both sites in the field, there was an overall consistency, but there were exceptions at individual field sites. Factors likely to result in such exceptions were discussed, and topics for further research identified.  相似文献   
5.
Farmed Atlantic salmon (Salmo salar) is a globally important production species, including in Australia where breeding and selection has been in progress since the 1960s. The recent development of SNP genotyping platforms means genome‐wide association and genomic prediction can now be implemented to speed genetic gain. As a precursor, this study collected genotypes at 218 132 SNPs in 777 fish from a Tasmanian breeding population to assess levels of genetic diversity, the strength of linkage disequilibrium (LD) and imputation accuracy. Genetic diversity in Tasmanian Atlantic salmon was lower than observed within European populations when compared using four diversity metrics. The distribution of allele frequencies also showed a clear difference, with the Tasmanian animals carrying an excess of low minor allele frequency variants. The strength of observed LD was high at short distances (<25 kb) and remained above background for marker pairs separated by large chromosomal distances (hundreds of kb), in sharp contrast to the European Atlantic salmon tested. Genotypes were used to evaluate the accuracy of imputation from low density (0.5 to 5 K) up to increased density SNP sets (78 K). This revealed high imputation accuracies (0.89–0.97), suggesting that the use of low density SNP sets will be a successful approach for genomic prediction in this population. The long‐range LD, comparatively low genetic diversity and high imputation accuracy in Tasmanian salmon is consistent with known aspects of their population history, which involved a small founding population and an absence of subsequent introgression. The findings of this study represent an important first step towards the design of methods to apply genomics in this economically important population.  相似文献   
6.
7.
In order to examine the widely held hypothesis that the reticulum of proteins which covers the cytoplamsic surface of the human erythrocyte membrane controls cell stability and shape, we have assessed some of its properties. The reticulum, freed of the bilayer by extraction with Triton X-100, was found to be mechanically stable at physiological ionic strength but physically unstable at low ionic strength. The reticulum broke down after a characteristic lag period which decreased 500-fold between 0 degrees and 37 degrees C. The release of polypeptide band 4.1 from the reticulum preceded that of spectrin and actin, suggesting that band 4.1 might stabilize the ensemble but is not essential to its integrity. The time-course of breakdown was similar for ghosts, the reticulum inside of ghosts, and the isolated reticulum. However, at very low ionic strength, the reticulum was less stable within the ghost than when free; at higher ionic strength, the reverse was true. Over a wide range of conditions the membrane broke down to vesicles just as the reticulum disintegrated, presumably because the bilayer was mechanically stabilized by this network. The volume of both ghosts and naked reticula varied inversely and reversibly with ionic strength. The volume of the naked reticulum varied far more widely than the ghost, suggesting that its deformation was normally limited by the less extensible bilayer. The contour of the isolated reticulum was discoid and often dimpled or indented, as visualized in the fluorescence microscope after labeling of the ghosts with fluoroscein isothiocyanate. Reticula derived from ghosts which had lost the ability to crenate in isotonic saline were shriveled, even though the bilayer was smooth and expanded. Conversly, ghosts crenated by dinitrophenol yielded smooth, expanded reticula. We conclude that the reticulum is a durable, flexible, and elastic network which assumes and stabilizes the contour of the membrane but is not responsible for its crenation.  相似文献   
8.
The aim of this research was to investigate the genetic basis for variation in root penetration ability and associated traits in the mapping population derived from the Australian bread wheat cultivars Halberd and Cranbrook in soil columns containing wax layers grown in controlled conditions and to compare this with performance in the field. Root and shoot traits of the doubled haploid line (DHL) from a cross of Halberd and Cranbrook were evaluated in soil columns containing wax layers. Contrasting DHLs that varied in the ability to penetrate a wax layer in soil columns were then evaluated for maximum root depth in the field on contrasting soils at Merredin, Western Australia. Genetic control was complex, and numerous quantitative trait loci (QTL) (53 in total) were located across most chromosomes that had a small genetic effect (LOD scores of 3.2–9.1). Of these QTL, 29 were associated with root traits, 37 % of which were contributed positively by the Halberd with key traits being located on chromosomes 2D, 4A, 6B, and 7B. Variation in root traits of DHL in soil columns was linked with field performance. Despite the complexity of the traits and a large number of small QTL, the results can be potentially used to explore allelic diversity in root traits for hardpan penetration.  相似文献   
9.

Background  

Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.  相似文献   
10.
Molecular evolution of a multigene family in group A streptococci   总被引:15,自引:0,他引:15  
The emm genes are members of a gene family in group A streptococci (GAS) that encode for antiphagocytic cell-surface proteins and/or immunoglobulin-binding proteins. Previously sequenced genes in this family have been named "emm," "fcrA," "enn," "arp," "protH," and "mrp"; herein they will be referred to as the "emm gene family." The genes in the emm family are located in a cluster occupying 3-6 kb between the genes mry and scpA on the chromosome of Streptococcus pyogenes. Most GAS strains contain one to three tandemly arranged copies of emm-family genes in the cluster, but the alleles within the cluster vary among different strains. Phylogenetic analysis of the conserved sequences at the 3' end of these genes differentiates all known members of this family into four evolutionarily distinct emm subfamilies. As a starting point to analyze how the different subfamilies are related evolutionarily, the structure of the emm chromosomal region was mapped in a number of diverse GAS strains by using subfamily-specific primers in the polymerase chain reaction. Nine distinct chromosomal patterns of the genes in the emm gene cluster were found. These nine chromosomal patterns support a model for the evolution of the emm gene family in which gene duplication followed by sequence divergence resulted in the generation of four major-gene subfamilies in this locus.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号